Permeable Pavement Guidance Document and Credits

MIDS Work Group

February 15, 2013

Work Order Tasks

- Review and Edit Guidance
 Document from Tech Team
- Add Sections
 - Suitability-retrofit, cold climates, etc.
 - Installer Certification
 - Credits
- Update Calculator

Photo: Barr Engineering Company

Process So Far

- Distributed 1st Draft of Guidance Document Nov.
 - Received comments from Tech Team and MPCA
- Distributed 2nd Draft January 25, 2013
- Tech Team/MPCA Conference Call February 7, 2013
 - Received comments from Tech Team and MPCA
- Updated PPT and Calculator after Conference Call
- Tech Team/Barr Updating Guidance Document-3rd
 Draft

Work Remaining

- Summarize Guidance Document to Work Group (today)
- Receive Final Comments 2 weeks from today (Feb. 28)
 - MPCA
 - Tech Team
 - Work Group
- Prepare and Distribute Final Guidance Document

- Three Types of Permeable Pavement
 - Pervious Concrete
 - Porous Asphalt
 - Permeable Interlocking Concrete Pavers (PICP)

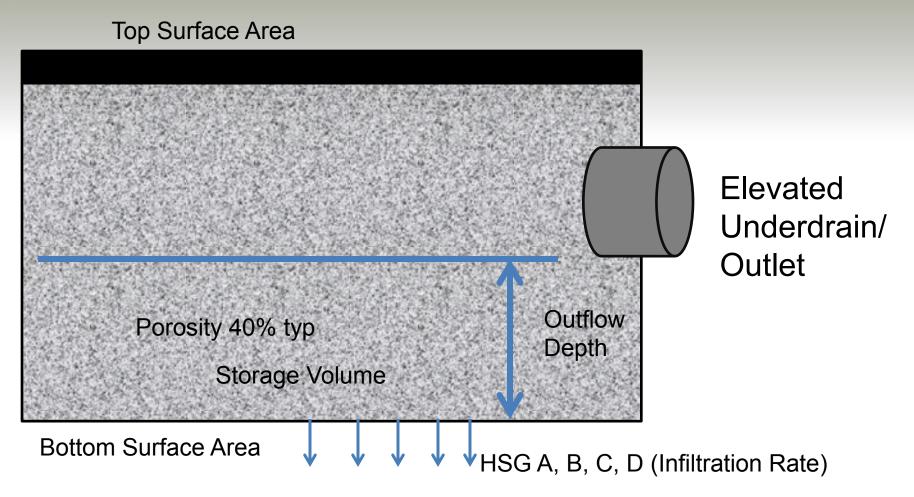
- Best Suited to Pedestrian Areas and Light Traffic
 - Can be designed for heavier loads
- Use to Reduce Impervious Surfaces
 - Paved areas act like green space
- Proper Construction is Critical for Performance
- Routine Maintenance is Required

- Contributing Area
 - Limit runoff from surrounding areas
 - 2:1 maximum ratio of Tributary Impervious (parking lots and roads) to Permeable Pavement unless:
 - Effective pretreatment for sediment control
 - Runoff is directly from a roof
 - Frequent maintenance is performed to prevent clogging (several times per year)

- Basic Function for All Three Types
 - Runoff flows through the pavement
 - Faster than rainfall intensity
 - Some filtering occurs
 - Prone to plugging
 - Runoff is stored in underlying reservoir
 - Crushed stone
 - Depth varies
 - Reservoir volume infiltrates or drains through underdrain (UD) or combination of both

- Basic Water Quality Benefits of Permeable Pavement
 - Infiltration = volume reduction = most benefit
 (Don't add an UD for a "factor of safety" in HSG A and B)
 - Larger Reservoir = Greater WQ Benefit
 - Effective at Reducing
 - Volume
 - TSS
 - TP
 - Temperature

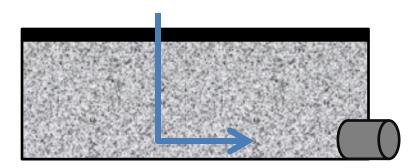
- Design Variables are Described
- Material Specifications Included
- Typical Cross Sections Provided
- Limitations Noted
- Sizing Equations Included



Calculator

- Input Variables
 - Top Surface Area
 - Bottom Surface Area
 - Outflow Depth (depth below UD or overflow)
 - Media Porosity (rock reservoir, typically 40%)

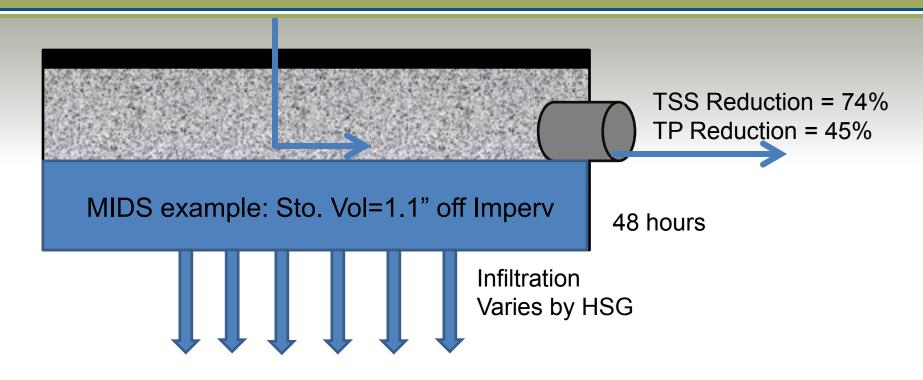
Permeable Pavement



Calculator

- Input Variables
 - Underlying Soil Hydrologic Soil Group (A, B, C, D)
 - Infiltration rate
 - User defined rate is also an option
 - Infiltration Adjustment for Compacted Subgrade (reduced)
 - Required Drawdown Time
 - 48 hours typical
 - 24 hours for trout streams

- Filtration (underdrain on the bottom)
 - No Volume Reduction
 - TSS Reduction = 74%
 - TP Reduction = 45%
- Values based on median of published values



- Volume Reduction = Storage Volume Infiltrated within Drawdown Time
- TSS and TP Reductions are a Function of the Storage Volume (increased storage=increased reductions)

- HSG A: 97% Annual Volume Reduction, 3% out the UD
- HSG C: 91% Annual Volume Reduction, 9% out the UD

Additional

- Limited Ratio of Tributary Impervious to Permeable
 Pavement is 2:1 unless:
 - Roof runoff
 - Effective pretreatment
- Pervious Areas May Be Routed to Permeable
 Pavement
 - Be careful to avoid high sediment and organic loads from pervious areas

Permeable Pavement Guidance Document and Credits

MIDS Work Group

February 15, 2013

