

Flexible Treatment Options Flexible Treatment Options April 19, 2013 MIDS Work Group Meeting

p-gen3-15c

Presentation Outline

- Review existing Flexible Treatment Options (FTO) Decision Sequence and framework used to develop it
- Test options on D-soil site
- Review FTO and determine if group desires a change

Excerpt from Current FTO Decision Sequence

Goal

Applicant attempts to comply with New Development Performance Goal (1.1" volume reduction). Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site.

Excerpt from Current FTO

Alternative #1

Applicant attempts to comply with the following conditions:

- a) Achieve at least 0.55" volume reduction goal, and
- b) Remove 75% of the annual TP load, and
- c) Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site

Excerpt from Current FTO

Alternative #2

Applicant attempts to comply with the following conditions:

- a) Achieve *volume reduction to the maximum extent practicable* (as determined by the Local Authority), <u>and</u>
- b) Remove 75% of the annual TP load, and
- c) Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site

Excerpt from Current FTO

Alternative #1

Applicant attempts to comply with the following conditions:

- Achieve at least 0.55" volume reduction goal, and
- Remove 75% of the annual TP load, and
- Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site

Alternative #2

Applicant attempts to comply with the following conditions:

- Achieve volume reduction to the maximum extent practicable (as determined by the Local Authority), <u>and</u>
- Remove 75% of the annual TP load, and
- Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site.

Framework

How much treatment is enough?

Simple Approach #1: What TP% reduction for a developed site is needed to match natural P load?

Treatment needed to match natural load

- To match concentrations, need 87% reduction from developed site—if the runoff volumes are the same
- Developed site will have more runoff volume than natural site
- Therefore, to match load, reduction would need to be greater than 87%

Simple Approach #2: What is % TP reduction at sites with A, B, and C soils when a development conforms to the agreed-upon volume performance goal?

Estimated Annual Phosphorus Loads Using Calculator

10 Acre Site		HSG						
50% Impervic	ous	А	В	С	D			
Developed without BMPs	TP (lbs)	10.5	10.9	11.1				

Estimated Annual Phosphorus Loads Using Calculator

10 Acre Site		HSG					
50% Impervic	ous	А	В	С	D		
Developed without BMPs	TP (lbs)	10.5	10.9	11.1			
Developed with Bioretention Basin	TP (lbs)	0.8	1.2	1.5			

Estimated Annual Phosphorus Load Reduction Percentage Using Calculator

Estimated Annual Phosphorus Load Reduction Percentage Using Calculator

How much treatment is enough?

Simple Approach #3: What about stream, shallow lake, and lake standards?

Stream, shallow lake, and lake standards

 In Twin Cities, the TP concentrations in these waters needs to be 100 (draft), 60, and 40 µg/L, respectively

 Assuming stormwater runoff has a TP concentration of 300 µg/L, need 67, 80, and 87% reductions, respectively

Summary of Simple Approaches

- Looking at needed TP reductions various simple ways:
 - Minimum: 67% reduction
 - Maximum: 92% reduction

Is goal within this range prudent and feasible?

Testing on Example 50% & 80% Impervious D-Soil Sites

Testing on Example 50% Impervious D-Soil Site Equivalent BMP Footprint Approach

Scenario	BMP(s)	Assumptions
1	Pond	NURP criteria

Scenario	BMP(s)	Assumptions
1	Pond	NURP criteria
2	Biofiltration Basin	Same footprint as pond

Scenario	BMP(s)	Assumptions
1	Pond	NURP criteria
2	Biofiltration Basin	Same footprint as pond
3A, 3B, 3C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile at bottom of basin

Scenario	BMP(s)	Assumptions
1	Pond	NURP criteria
2	Biofiltration Basin	Same footprint as pond
3A, 3B, 3C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile at bottom of basin
4A, 4B, 4C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile suspended 1 foot off bottom of basin

Scenario	BMP Footprint % of Site	TP% Removal
1	3	50

Scenario	BMP Footprint % of Site	TP% Removal		
1	3	50		
2	3	55		

BARF

If we match filtration footprint = pond footprint TP removal is higher

Scenario			BMF %	P Footp 6 of Sit	orint e	TP% Removal		
1			3			50		
2			3			55		
3A			3					
4A			3					

RARE

Size of Bioretention Basin on A Soils

S	cenari	0	BMF %	P Footp 6 of Sit	orint e	TP% Removal			
	1			3		50			
2			3			55			
3A			3			55			
4A			3			57			

Suspended Drain Tile Makes a Small Difference

Scenario			BMF %	P Footp 6 of Sit	orint e	TP% Removal			
1			3			50			
2			3			55			
3A	3B		3	4		55			
4A	4B		3	4		57			

RARE

Size of Bioretention Basin on B Soils

Scenario			BMI %	P Footp 6 of Sit	orint e	TP% Removal		
	1			3		50		
2			3			55		
3A	3B		3	4		55	57	
4A	4B		3	4		57	59	

RARE

Suspended Drain Tile Makes a Small Difference

Scenario			BMP Footprint % of Site			TP% Removal		
1			3			50		
2			3			55		
3A	3B	3C	3	4	6	55	57	
4A	4B	4C	3 4 6			57	59	

RARE

Scenario			BMP Footprint % of Site			TP% Removal		
	1		3			50		
2		3		55				
3A	3B	3C	3	4	6	55	57	61
4A	4B	4C	3	4	6	57	59	65

Summary:

If developers held to same footprint as bioretention basin required for A, B, C soils without restrictions:

- 55-61% TP reduction achieved with biofiltration basins with drain tile at bottom
- **57-65%** TP reduction achieved with biofiltration basins with suspended drain tile

Testing on Example 50% Impervious D-Soil Site What footprint is needed to achieve 55%, 60%, 65%, 70%, and 75% TP removals?

Scenario	TP % Reduction Goal	BMP
5	55-75%	Biofiltration Basin without iron and drain tile at the bottom

Scenario	TP % Reduction Goal	BMP
5	55-75%	Biofiltration Basin without iron and drain tile at the bottom
6	55-75%	Biofiltration Basin without iron and drain tile suspended 1 foot above the bottom

D-Soil Site & 0.3-Acre Pond (Dead Storage Volume = Runoff from 2.5" Event)

Annual TP Reduction

50%

D-Soil Site & 0.3 acre Biofiltration Basin

Annual TP Reduction

55% Bottom Drain Tile 60% Suspended Drain Tile

D-Soil Site & 0.55-Acre Biofiltration Basin

Annual TP Reduction

60% Bottom Drain Tile 65% Suspended Drain Tile

D-Soil Site & 0.77-Acre Biofiltration Basin

Annual TP Reduction

65% Bottom Drain Tile 70% Suspended Drain Tile

D-Soil Site & 1-Acre Biofiltration Basin

Annual TP Reduction

BARR

70% Bottom Drain Tile 75% Suspended Drain Tile

D-Soil Site & 1.25-Acre Biofiltration Basin

Annual TP Reduction

75% Bottom Drain Tile

Summary for 50% Impervious Site

- Achieving 55% TP reduction is realistic
- Achieving greater than 70% TP reduction is feasible (without iron) but is it prudent?

Testing on Example 80% Impervious D-Soil Site Equivalent BMP Footprint Approach

Scenario	BMP	Assumptions
7A, 7B, 7C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile at bottom of basin

Scenario	BMP	Assumptions
7A, 7B, 7C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile at bottom of basin
8A, 8B, 8C	Biofiltration Basin	Same footprint as bioretention basin sized to Performance Goal for A, B, & C soils; drain tile suspended 1 foot off bottom of basin

S	Scenario		BMI %	P Footp 6 of Sit	orint e	TP% Removal
7A	7B	7C	5	6	9	
8A	8B	8C	5	6	9	

Size of Bioretention Basin on A, B, & C Soils

S	Scenario B		BMI %	BMP Footprint % of Site			TP% Removal		
7A	7B	7C	5	6	9	56	57	61	
8A	8B	8C	5	6	9	58	60	66	

BARR

Suspended Drain Tile makes a Difference

Summary:

If developers held to same footprint as bioretention basin required for A, B, C soils without restrictions:

- 56-61% TP reduction achieved with biofiltration basins with drain tile at bottom
- **58-66%** TP reduction achieved with biofiltration basins with suspended drain tile

Testing on Example 80% Impervious D-Soil Site What footprint is needed to achieve 55%, 60%, 65%, 70%, and 75% TP removals?

Scenario	TP % Reduction Goal	BMP
9	55-75	Biofiltration basin without iron and drain tile at the bottom

Scenario	TP % Reduction Goal	BMP
9	55-75	Biofiltration basin without iron and drain tile at the bottom
10	55-75	Biofiltration basin without iron and drain tile suspended 1 foot above the bottom

Example D-Soil Site 80% Imperviousness

Example D-Soil Site, 80% Imperviousness, Entire Site Tributary to Biofiltration Basin w/ Suspended Drain Tile using 3.4% of Site = 55% TP Reduction

Example D-Soil Site, 80% Imperviousness, Entire Site Tributary to Biofiltration Basin w/ Suspended Drain Tile using 6.2% of Site = 60% TP Reduction

16% of the Site—using it all for a biofiltration basin with drain tile at the bottom = 70% TP reduction

Summary for 80% Impervious Site

- Achieving 55% TP reduction with biofiltration basin with suspended drain tile is feasible
- Achieving greater than 70% TP reduction is not feasible with biofiltration basin with drain tile at the bottom

Overall Summary

- Looking at needed TP reductions various simple ways: 67-92% is needed
- If developers held to same footprint as bioretention basin required for A, B, C soils without restrictions, 55-66% TP reduction is achieved on 50% and 80% impervious sites
- Achieving greater than 70% TP reduction on 50% impervious sites is difficult with biofiltration basins
- Achieving greater than 65% TP reduction on 80% impervious sites is difficult with biofiltration basins

Back to FTO

Excerpt of Current FTO

- **Goal:** Applicant attempts to comply with New Development Performance Goal (1.1" volume reduction). Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site.
- **Alternative #1:** Applicant attempts to comply with the following conditions:
 - Achieve at least 0.55" volume reduction goal, and
 - Remove 75% of the annual TP load, and
 - Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site.

Alternative #2: Applicant attempts to comply with the following conditions:

- Achieve volume reduction to the maximum extent practicable (as determined by the Local Authority), <u>and</u>
- Remove 75% of the annual TP load, and
- Options considered and presented shall examine the merits of relocating project elements to address varying soil conditions and other constraints across the site.

Possible Options

- Keep FTO as is
- Lower 75% TP reduction requirement
- Other options

Framing Flexible Treatment Options: Antidegradation Definition of "Prudent" Alternatives*

"Prudent" (in context of antidegradation alternatives analysis):

- Selected with care and sound judgment
- Does not have unusual or extraordinary <u>economic</u>, <u>social</u>, or <u>environmental</u> costs

Framing Flexible Treatment Options: Antidegradation Definition of "Feasible" Alternatives*

- "Feasible" (in context of antidegradation alternatives analysis):
 - Capable of being done with existing technology;
 - In accordance with acceptable engineering standards;
 - Consistent with reasonable public health, safety, and welfare requirements;
 - Legally possible; and
 - Has supportive governance that can be successfully put into practice to accomplish the task.