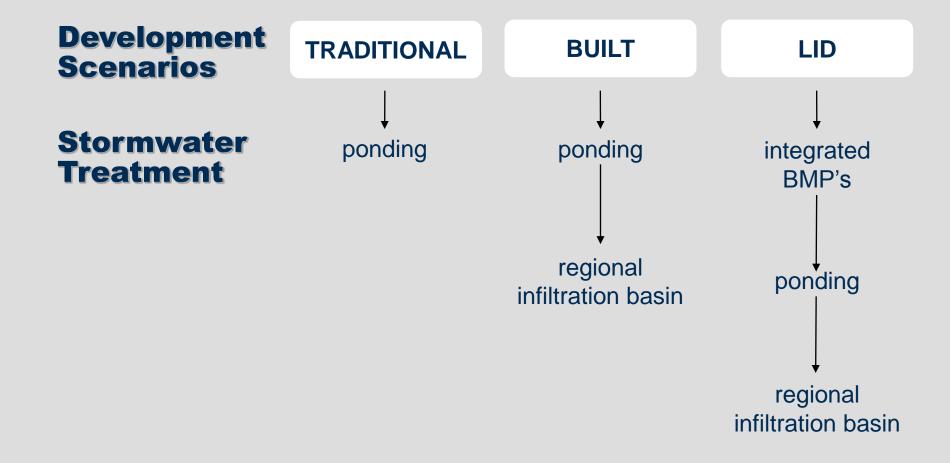
MINNESOTA LOW-IMPACT DEVELOPMENT STUDY Fall 2006

Kevin Biehn, RLA, CPESC, LEED AP Jay Michels, CPESC

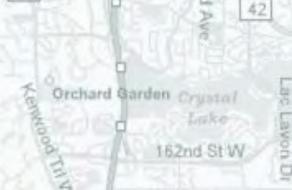
PROJECT MADE POSSIBLE BY

Financial & In-kind contributions made by:

Project design & administration:

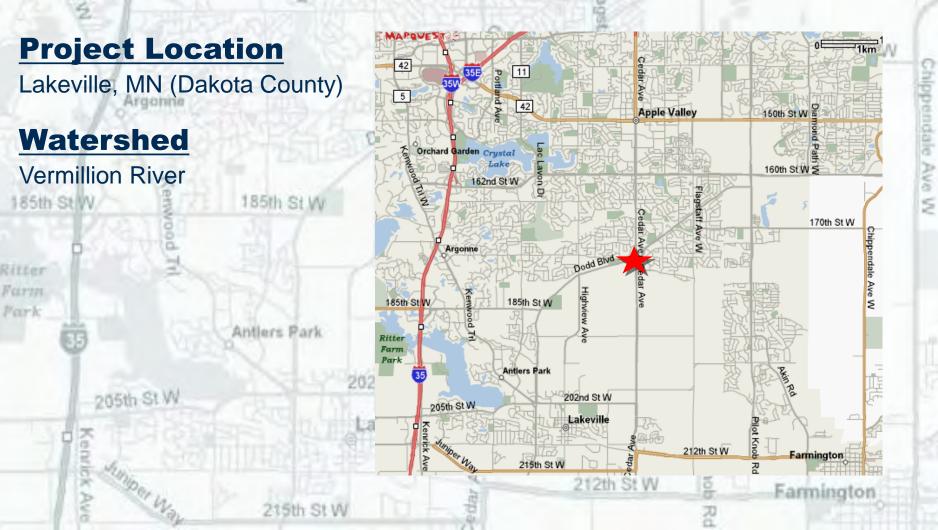


OBJECTIVE


A side by side comparison of traditional design and LID design comparing:

- 1. Stormwater performance
 - a) quality
 - b) quantity
- 2. Development
 - a) yield
 - b) cost
- 3. Maintenance cost
- 4. Quality of Life Benefits

DELIVERABLES


PROJECT SITE

REAL WORLD SITE

Apple Valley

150th St W

REAL WORLD SITE

Parcel Description

SE of Cedar Ave and Dodd Blvd 217.10 acres Soils – B's, C's and Isolated D's Discharges to Vermillion Trib.

REAL WORLD SITE

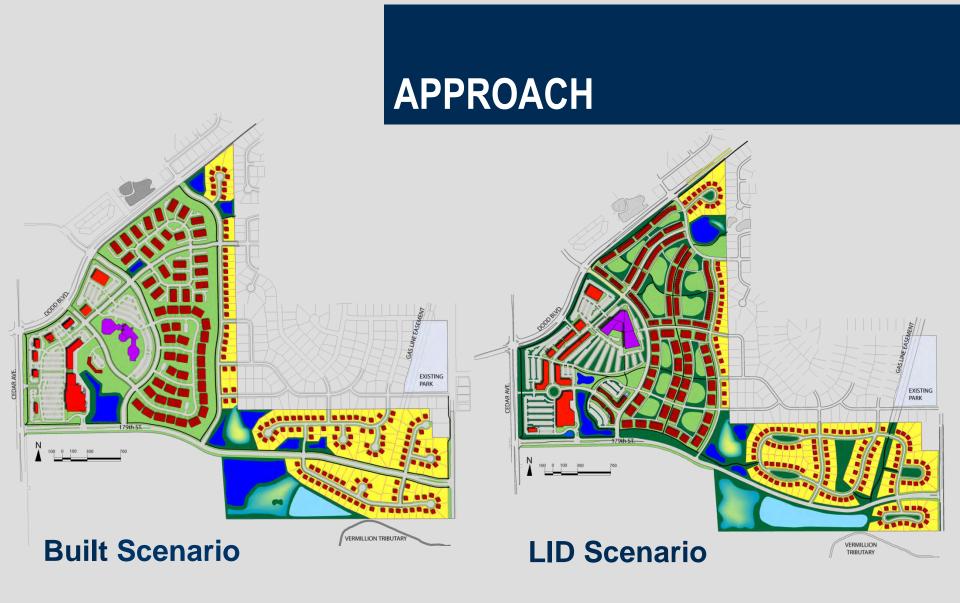
Development

Residential – unattached Residential – attached Senior Housing Institutional Commercial

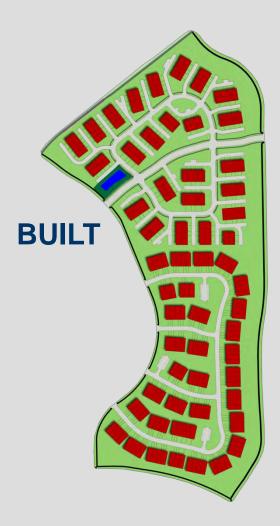
LID Design

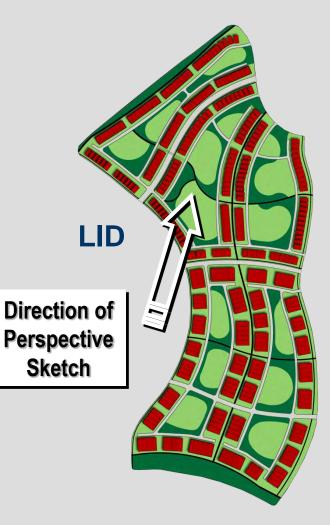
APPROACH

PLANNING


- Hydrology as the integrating framework
- Control stormwater at the source
- Multifunctional landscape and infrastructure
- Reduce impervious surfaces
- Creating a system of continuous stormwater polishing
- Disconnect impervious surfaces

UTILIZED


- Bioretenion & vegetated swales
- Regional infiltration basin


NOT UTILIZED

- Narrower Street Widths
- Smaller Lot Sizes
- Porous or Pervious Pavements
- Green Roofs
- Underground Proprietary Devices

Landuse Comparison **MULTI-FAMILY**

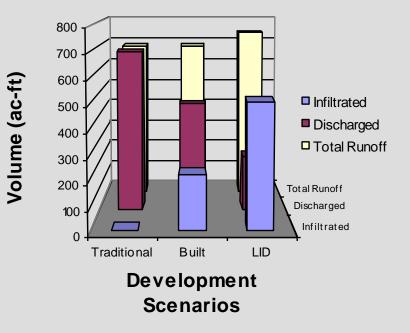
Landuse Comparison **MULTI-FAMILY**

Incentives YIELD

BUILDING TYPE	DEVELOPMENT SCENARIO			
BOIEDING I I PE	CONVENTIONAL	BUILT	LID	
RESIDENTIAL				
Unattached Units (REU=1.0)	130	140	149	
Attached Units (REU=0.80)	317	317	348	
	447	457	497	
SENIOR HOUSING				
Units (REU=0.5)	140	140	280	
INSTITUTIONAL				
Square Feet (REU=2500 sf)	83,575	83,575	83,575	
COMMERCIAL				
Square Feet (REU=2500 sf)	182,836	182,836	219,581	
	·	•		
TOTAL RESIDENTIAL	664	682	808	
EQUIVALENT UNITS (REU) :				

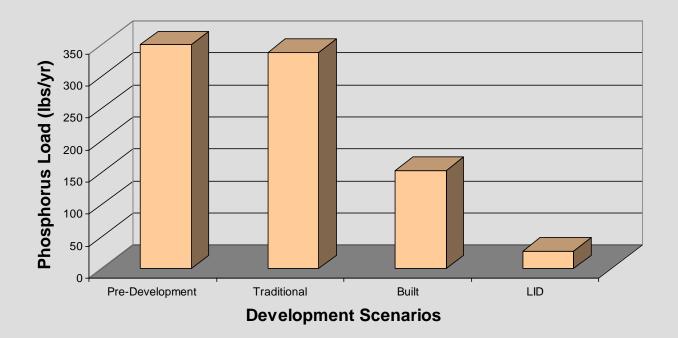
More potential developable area:

- ✓ Reduced ponding requirements
- ✓ More efficient site planning (lot platting)
- ✓ Multifunctional landscape


STORMWATER PERFORMANCE

Performance WATER QUANTITY

LID Performance


- ✓ Increased total runoff generated
- ✓ Reduced peak discharge (Zero Discharge for 2-yr 24-hr event)
- Reduced total discharge volume from site
- Increased infiltration volume groundwater recharge

Annual Stormwater Volume During a normal rainfall year (26.6 inches)

Performance WATER QUANTITY

Annual Phosphorus Loading During a normal rainfall year (26.6 inches)

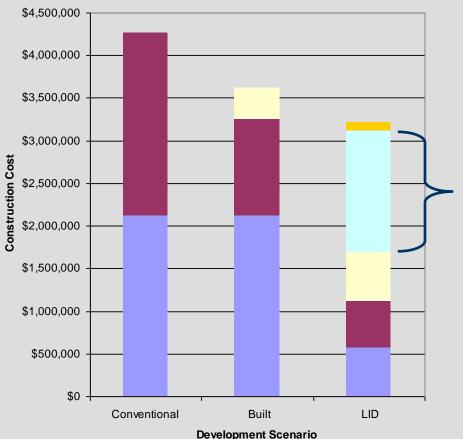
Performance WATER QUANTITY

Thermal pollution reduction via:

- Disconnection of impervious surfaces
- Reduced total runoff volume
- Runoff filtered through the bioretention facilities and cooled
 - one study observed a temperature drop of 12°C between influent and effluent water
- Less stormwater ponding surface area

CONSTRUCTION & MAINTENANCE COST

Important Consideration when evaluating cost


Stormwater features like bioretention often replace area that would likely be landscaped anyway.

 Thus, the true stormwater construction cost for the LID scenario would be less than the construction cost reported

The LID scenario has a higher density than the BUILT example. Since additional infrastructure was necessary to service these additional units,

 cost per unit is a more appropriate cost comparison than total cost

Stormwater Infrastructure Construction Cost Summary

Stormwater Development Cost

Note:

Includes "landscaping" installation cost for many areas that would likely be landscaped in each development

- Vegetated Swale
 Bioretention
 Regional Infiltration Basin
 Stormwater Pond
- Stormsewer Infrastructure

SUMMARY OF DEVELOPMENT COST

ACTIVITY

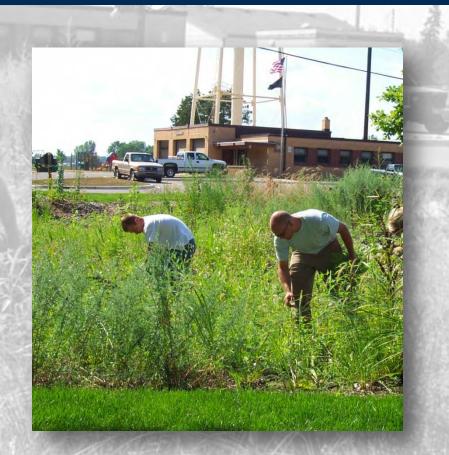
COST DIFFERENCE

FOR LID

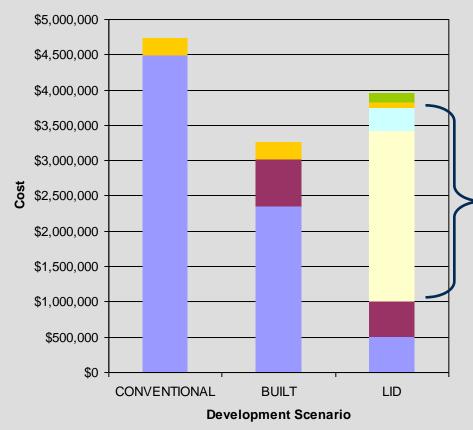
SUMMARY OF CONSTRUCTION CO	ST
Grading	-
Erosion Control	+
Sanitary Sewer	+
Watermain	+
Streets	-
Storm Sewer Infrastructure	-
Storm Water BMP's	+
OTHER COST	
Developers Design	+
Lot Corners	+
One Year Real Estate Taxes	+

SUMMARY OF CASH FEES

Park Dedication	-
Surface Water Management Utility	÷
Landowner education	÷


SUMMARY OF DEVELOPMENT COST

DEVELOPMENT COST	BUILT	LID
SUMMARY OF CONSTRUCTION COST	\$15,031,647	\$14,743,333
OTHER COST	\$1,960,185	\$2,031,418
SUMMARY OF CASH FEES & CREDITS	\$1,113,205	\$1,032,807
SITE DEVELOPMENT COST	\$18,105,037	\$17,807,558
SITE DEVELOPMENT COST	\$18,105,037	\$17,807,558
SITE DEVELOPMENT COST SITE DEVELOPMENT COST	\$18,105,037 \$26,540.58	\$17,807,558 \$22,042.81


Incentives MAINTENANCE COSTS

Maintenance Cost Considerations

- BMP's, such as bioretention, are strategically placed in areas that would otherwise be landscaped.
- The O&M cost for the LID scenario reflect the landscaping cost for these areas - over 11 acres!
- Operation and maintenance costs for a bioretention facility are comparable to those of typical landscaping

Incentives MAINTENANCE COSTS

30-Year O&M COST

30-year Stormwater Maintenance Cost

Note:

Includes "landscaping" maintenance cost for many areas that would likely be landscaped in each development scenario

- Landowner Education
- Grit/Oil Separator; Catch Basin Manhole & Street Sweeping
- Vegetated Swale
- Bioretention
- Regional Infiltration Basin
- Wet Pond

Incentives MAINTENANCE COSTS

Stormwater Maintenance Cost Summary

	CONVENTIONAL	BUILT	LID
30 Year Maintenance Cost	\$4,729,490	\$3,260,824	\$3,948,852
Maintenance Cost Per Residential Equivalent Unit (REU) Per Year	\$237	\$159	\$163
Note: Includes "landscapin areas that would like development scenari			

MINNESOTA LOW-IMPACT DEVELOPMENT STUDY Fall 2006

Kevin Biehn, RLA, CPESC, LEED AP Jay Michels, CPESC