MIDS Work Group Meeting May 20, 2010

Credit Calculations and Calculator Functions

Today's Goals The Foundation for the Credits & Calculator

- Discuss proposed calculations
 - Performance goal requirement
 - Volume reductions provided by various BMPs
 - Pollutant reductions provided by various BMPs
- Receive feedback and validation
 - Calculation methods
 - Ideas for encouraging innovative stormwater management while providing realistic credits

Future Topics

- Alternative Compliance/Performance Goals for:
 - Linear sites
 - Redevelopment sites
 - Sites with restrictions
- Fine Tune Pollutant and Volume Reduction Estimates
- Definitions
- Triggers

Background: Consensus on Performance Goal from April Work Group Meeting

"For new, nonlinear developments that create more than one acre of new impervious surface on sites without restrictions, stormwater runoff volumes will be controlled and the postconstruction runoff volume shall be retained on site for 1.1 inches of runoff from impervious surfaces statewide."

Two primary functions of credit calculator:

- Quantify the performance goal requirement
 - How much volume must be retained?
 - How many pounds of pollutants are removed annually (for alternative compliance, TBD)
- Determine if project meets performance goal
 - How much volume is retained?
 - How many pounds of TSS and TP are removed on an average annual basis?

- Performance goal is not tied to a timeframe
 - "...1.1 inches of runoff from impervious surfaces"
- However, Work Group wants to know the pounds of TP and TSS removed annually
- Need to make a connection

Calculator Function 1A: Determine Volume Requirement

Calculator Function 1B: Determine Pollutant Removal Requirement

 For non-restricted sites, conformance to volume requirement achieves pollutant removal requirement; no additional requirement needed

%	% Removal			
Imperviousness	ТР	TSS		
10	78%	90%		
30	92%	97%		
50	95%	98%		
70	96%	99%		
90	96%	99%		

Removal percentages for 10-acre site with B soils and bioretention basin sized for 1.1" times the proposed impervious surface area

Calculator Function 1B: Determine Pollutant Removal Requirement (Phase 2)

• Linear and redeveloped sites and sites with restrictions – requirement to be determined

Site		Soil			Restrictions
	A	В	С	D	Karst, bedrock, groundwater, etc.
New Residential	Х	Х	Х		
New Commercial/Industrial	Х	Х	Х		
New Linear					
Redeveloped Residential					
Redeveloped Commercial/Industrial					
Redeveloped Linear					
Redeveloped Ultra Urban					
Potential Stormwater Hotspots					

Calculator Function 2: Determine Volume Retained by BMPs

Quantifying Reductions in Volumes from BMPs

Some Easy to Quantify Volume-Reducing BMPs

- Bioretention basins/rainwater gardens*
- Infiltration trenches
- Pervious pavement*
- Underground infiltration
- Dry swales*
- Green roofs
- *without drain tile

Some More Difficult to Quantify Volume-Reducing BMPs

- Harvest/re-use
- Filter strips
- Grass channels
- Infiltration shelves (e.g., shelves at wet ponds)
- Trees/urban forestry
- Cluster development
- Enhanced operations

Methods to Determine Volume Retention

- Calculate volume for easy-to-quantify BMPs
- Use reported average reduction percentages for harder-to-define BMPs

Example: Easy-to-Quantify BMP Volume Calculation Bioretention basin without drain tile

Bottom surface area & Underlying soil type

Example: Easy-to-Quantify BMP Volume Calculation Bioretention basin without drain tile

Parameter	Inputs Example
Bottom Surface Area (square feet)	1500
Area at Outflow (square feet)	1900
Depth below Outflow (feet)	1.1
Underlying Soil Type	B - SM

Example: Easy-to-Quantify BMP Volume Calculation Bioretention basin without drain tile

Parameter	Output Example
Infiltration Rate (inches/hour)	0.6
Drain Dry Time (hours)	22
Drains Dry Within Required Time	Yes
Volume Retained (cubic feet)	1870

Example: Easy-to-Quantify BMP volume calculation Porous pavement

Source: National Asphalt Pavement Association

Example: Easy-to-Quantify BMP volume calculation Porous pavement

Parameter	Inputs Example
Porosity of media/stone recharge bed (ft ³ /ft ³)	0.4
Width (ft)	32
Length (ft)	100
Depth (ft)	1
Underlying soil type	B-SM

Example: Easy-to-Quantify BMP Volume Calculation Porous pavement

Parameter	Output Example
Infiltration Rate (inches/hour)	0.6
Drain Dry Time (hours)	22
Drains Dry Within Required Time	Yes
Volume Retained (cubic feet)	1280

Example: More Difficult to Quantify BMP Volume Reduction Grass Channel

- Use values reported in literature
- Reduce volume conveyed through grass channel by 10%

BMP	Volume Reduction %
Bioretention/Rainwater Garden	Calculate
Biofiltration	40%*
Infiltration Basin/Trench	Calculate
Permeable Pavement	Calculate
Grass Channel	10%
Dry Swale	40 or 60%*
Wet Swale	0%
Filter Strips	25-50%
Sand Filters	0%
Green Roofs	Calculate
Wet Pond	0%
Infiltration Shelf at Wet Pond	0%?

Calculator Function Summary (so far)

• Function 1:

- Determine Volume Retainage Requirement
- Determine Pollutant Reduction Requirement
 - Achieving volume retainage, conforms to pollutant reduction requirement
 - Phase 2 will determine performance goal for other sites/alternative compliance

• Function 2:

- Determine Proposed Volume Retainage

Calculator Function 3: Determine the pollutant load reductions from BMPs

Making the Connection: Performance Goal to Pollutant Removal

Volume control performance goal is SIMPLE

• Goal not time dependent (instantaneous)

 BMP must retain required volume whether it occurs in ½-hour or 12 hours

Making the Connection: Performance Goal to Pollutant Removal

 Work Group wants calculator to determine pollutant load reduction on an annual basis

• TP and TSS removal to be reported in pounds per year

Challenge: How to make the connection?

- 1. Use "Simple Method" to Calculate Annual Pollutant Load from Site (w/o BMP)
- 2. Estimate Pollutant Removal (%) from BMP(s)
- 3. Apply Pollutant Removal % to Annual Load to Determine Annual Pollutant Load Reduction

- 1. Use "Simple Method" to Calculate Annual Pollutant Load from Site (w/o BMP)
- 2. Estimate Pollutant Removal (%)
- 3. Apply Pollutant Removal % to Annual Load to Determine Annual Pollutant Load Reduction

Pollutant Loading Basics

Can Decrease Pollutant Loading By Reducing Runoff Volume

Pollutant Load = 20 mg

Pollutant Load = 10 mg

Or Can Decrease Pollutant Loading By Reducing Pollutant Concentration

Pollutant Load = 20 mg

Pollutant Load = 10 mg

Calculating Annual Pollutant Load: The Simple Method

- Equation developed by Tom Schueler in 1987
- Estimates pollutant loads on an annual basis
- Requires easily obtainable data:
 - Annual precipitation
 - Watershed and imperviousness areas
 - Pollutant concentration

$R = A^* P * P_j * R_v \div 12$

R = Annual runoff (acre-feet)

$R = A^* P^* P_j^* R_v \div 12$

R = Annual runoff (acre-feet)A = Drainage Area (acres)

$\overline{R} = \overline{A^* P^* P_j} \overline{R_v} \div 12$

R = Annual runoff (acre-feet)
 A = Drainage Area (acres)
 P = Annual rainfall (inches)

$\overline{R} = \overline{A^* P * P_j * R_v} \div 12$

- \bigcirc R = Annual runoff (acre-feet)
 - A = Drainage Area (acres)
 - P = Annual rainfall (inches)

 P_j = Fraction of annual rainfall events that produce runoff (usually 0.9)

$R = A^* P * P_j * R_v \div 12$

- R = Annual runoff (acre-feet)
 - A = Drainage Area (acres)
- P = Annual rainfall (inches)
 - P_j = Fraction of annual rainfall events that produce runoff (usually 0.9)
- R_v = Runoff coefficient, which expresses the fraction of rainfall that is converted into runoff.

Runoff Coefficient (Rv): Fraction of rainfall that runs off

Examples:

For site with 20% impervious, Rv = 0.05 + 0.009 * 20 = 0.23
For site with 100% impervious, Rv = 0.05 + 0.009 * 100 = 0.95

Runoff Coefficient (Rv): Fraction of rainfall that runs off

More Complex: $= Rv_{I} * \iiint \% + Rv_{T} * \iiint \% + Rv_{F} * \iiint \%$

Where,

= % of site in Impervious Cover

= % of site in Turf Cover

= % of site in Forest Cover

Treatment Volume: Site Runoff Coefficients (Rv)¹

¹ Center for Watershed Protection – Technical Memorandum: The Runoff Reduction Method; 4/18/08 *Forest coefficient adjusted for assessing compliance

Pitt et al (2005), Lichter and Lindsey (1994), Schueler (2001a, 2001b, 1987), Legg et al (1996), Pitt et al (1999), and Cappiella et al (2005)

Chesapeake Bay Stormwater Training Partnership

So far, we've calculated the runoff volume entering the BMP

Annual runoff volume

The Simple Method: Annual Pollutant Load

L = Annual pollutant load (lbs/year)
 = Annual runoff volume (acre-feet)
 = Pollutant concentration (mg/l)
 0.226 = Unit conversion factor

Event Mean Concentration (EMC)

 Average concentration of a pollutant in runoff for a monitored runoff event

The Simple Method: Total Phosphorus EMCs

Concentrations for Total Phosphorus			
Land Cover/Land Use	Total Phosphorus (mg/L)		
Cropland ¹	0.32		
Forest/Shrub/ Grassland ¹	0.04		
Open Water ¹	0.01		
Wetlands ¹	0.01-0.04*		
Freeways ²	0.25		
Commercial ^{1,2}	0.22		
Farmsteads ¹	0.46		
Industrial ^{1,2}	0.26		
Residential ²	0.30		
Multi-Family Residential ^{1,2}	0.27-0.32		
Park and Recreation ¹	0.04		
Open Space ^{1,2}	0.31		
Public/Semi Public (Institutional) ^{1,2}	0.18		

Typical EMCs often vary by land use

MN Stormwater Manual suggests using 0.30 mg/L for Simple Method (Appendix L)

The Simple Method: Total Suspended Solids EMCs

Land Cover/ Land Use	TSS (mg/L)
Residential	48
Commercial	43
Industrial	77
Institutional	17
Freeways	99
Open Space	51
Source: Robert Pitt, University of	of Alabama, 2003

BARR

TSS

The Simple Method Full equation

$L = [(P)(P_j)(R_v)/12] (C) (A) (2.72)$

L = Load of pollutant (lbs/yr)

- P = Rainfall depth per year (in)
- P_i = Fraction of rainfall events that produce runoff
- R_v = Runoff coefficient expresses the fraction of rainfall which is converted to runoff (Rv = 0.05 + 0.009 * Imperviousness)
- C = Flow-weighted mean concentration of pollutant in runoff (mg/l)
- A = Site area (ac)
- 12 and 2.72 = unit conversions

Use Simple Method to Calculate Pollutant Loading from Site

Loading Example from site w/o BMP:

Ten Acre Site, 30% Impervious

Annual Runoff Volume ~ 7 acre-feet

Total Phosphorus Loading = 5.8 lbs/year

Stretch and Re-Caffeinate

- 1. Calculate Annual Pollutant Load from Site (w/o BMP)
- 2. Estimate Pollutant Removal (%)
- 3. Apply Removal % to Annual Load to Determine Annual Pollutant Load Reduction

Pollutant removal primarily occurs through the reduction of volume
Infiltration
Interception
Evapotranspiration
Rainwater Harvesting

- Assume 100% Pollutant Removal from Volume Retained
- For Volume NOT retained by BMP, assume 0% - 100% Pollutant Removal
 - Depending on BMP
 - Depending on if BMP is designed online or offline

Where,

%RVR = % Annual Runoff Volume Retained

%PR = % Pollutant Removal (as defined by change in EMC as runoff flows in and out of BMP)

Approach very similar to that used in Virginia Calculator

 Developed by the Center for Watershed Protection for the Chesapeake Stormwater Network and State of Virginia

BMP with 100% Runoff Volume Retained (RVR):

BMP with NO volume reduction, but 75% pollutant removal (%PR):

BMP with 60% runoff volume retention (%RVR), and 40% pollutant removal (%PR):

How will %RVR be calculated?

 Runoff volume retention varies with BMP size for most BMPs

• So, what is the relationship between BMP size and annual runoff volume removal?

 Use performance curves for easy-to-quantify BMPs

Performance Curves to Determine Percent Annual Volume Retained

BMP Volume (cubic feet)

Performance Curves to Determine Percent Annual Volume Retained

Percent Reduction in Runoff Volume

BMP Volume (cubic feet)

Performance Curves to Determine Percent Annual Volume Retained

Percent Reduction in Runoff Volume

How to Calculate % Annual Volume Removed?

 For other volume control BMPs, where development of performance curves will be too complex, use volume reduction % from literature

For example, grass channel 10% - 20% volume reduction

BMP	Volume Reduction %
Bioretention/Rainwater Garden	Calculate
Biofiltration	40%*
Infiltration Basin/Trench	Calculate
Permeable Pavement	Calculate
Grass Channel	10%
Dry Swale	40 or 60%*
Wet Swale	0%
Filter Strips	25-50%
Sand Filters	0%
Green Roofs	Calculate
Wet Pond	0%
Infiltration Shelf at Wet Pond	0%?

How to Estimate % Pollutant Removal?

• Use modeling to estimate, where applicable

• Use available literature

BMP	TP % PR	TSS % PR
Bioretention/Rainwater Garden	50-100	85-90
Biofiltration	25-50	60-85
Infiltration Basin/Trench	25-100	85-100
Permeable Pavement	25-85	75-90
Grass Channel	15-50	50-87
Dry Swale	20-50	50-87
Wet Swale	20-50	69-87
Filter Strips	0-45	30-73
Sand Filters	0-65	70-92
Green Roofs	0-100	0-90
Wet Pond	40-75	70-90
Infiltration Shelf at Wet Pond	?	?

- Calculate Annual Pollutant Load from Site (w/o BMP) ~ 5.8 lbs TP/year
- 2. Estimate Pollutant Removal ~ 90% reduction
- 3. Apply Pollutant Removal % to Annual Load to Determine Annual Pollutant Load Reduction

Example: Calculating Annual Pollutant Load Reduction

Pollutant Load = Reduction

Total % Pollutant Removal

Site Pollutant Load

90% x 5.8 lbs/year

X

SIMPLE, right?

Questions? Comments? Suggestions?

