Introduction to Barr's Initial MIDS Tasks

Legislation Review

The agency shall develop performance standards, design standards, or other tools to enable and promote the implementation of low-impact development and other stormwater management techniques. For the purposes of this section, "low-impact development" means an approach to storm water management that mimic's a site's natural hydrology as the landscape is developed. Using low-impact development approach, storm water is managed on-site and the rate and volume of predevelopment stormwater reaching receiving waters is unchanged. The calculation of predevelopment hydrology is based on native soil and vegetation.

The GOAL according to the legislation:

- The goal is to "promote LID"
- An approach "that mimic's a site's natural hydrology"
- "the rate and volume of predevelopment stormwater..... is unchanged"
- "based on native soil and vegetation"
- "storm water is managed on-site"

Definitions:

- Natural Hydrology = Pre-settlement conditions?
- Predevelopment = Pre-settlement?
- Pre-settlement considerations = soils and vegetation before any human alteration?
- Any other pre-settlement variables?

• How much rainfall did nature keep from running off?

• Do that.

• (*That* may or may not meet antidegradation or TMDL goals.) We'll find out.

Barr's First Tasks

 Provide Background and Foundation for **Defining Performance Goals** Vegetation and Soils Regional Hydrologic Metrics Precipitation Infiltration Abstractions Performance Goal Alternative Evaluation and **Runoff Volume Characterization**

Barr's Anticipated Schedule – WO #1

Provide Background and Foundation for	September			October		
Performance Goals		20- 26	27- 1	4- 10	11- 17	18- 24
Work Order Fully Executed (Sept. 13)						
Research Options to Define Performance Goals for Different Sectors in MN						
Define Regional Hydrologic Metrics						
Characterize Runoff Volumes						
MIDS Work Group Meeting (Sept. 24)						
MIDS Work Group Meeting (Oct. 15)						
Finalize Products						

Barr's Anticipated Overall Schedule

	Sept.	Oct.	Nov.	Dec.	Jan.
Performance Goal(s)					
Credits)R			
Calculator					

Suggested Decision Dates

• September 24:

- Eliminate one or more common volume control practices from further evaluation
- October 15 (or before):
 - Direct Barr on which performance goal to pursue
- November 19:
 - Finalize performance goal(s)
- December 17:
 - Finalize credits method & model
- January 21:
 - Approve calculator

Variables Affecting Runoff (hydrology)

- Climate (varies by eco-region)
 - Precipitation
 - Amount
 - Duration
 - Intensity
 - Time of year
 - Growing season
 - Air temperature
 - Humidity

Variables Affecting Runoff (hydrology)

- Soils (varies across the state)
 - Infiltration rate
 - Vegetation type
- Groundwater elevation
 - Shallow
 - Deep
- Surface Water
- Bedrock

Variables Affecting Runoff (hydrology)

 Vegetation - Prairie – Deciduous forest Boreal forest Corn and Soybeans Topography -flat Steep

"Make everything as simple as possible, but not simpler."

- Albert Einstein

Precipitation Variability in MN: April - Oct

Normal Annual Precipitation Variability in MN: 18-35 inches

Variability in 1-year, 24-hour Rainfall in MN

Variability in 100-year, 24-hour Rainfall in MN

Variability in 24-hr Precipitation Events in MN

Recurrence Period	Range of Precipitation throughout MN (24-hour rainfall duration)	
1-year	1.8 in – 2.6 in	
2-year	2.1 in – 2.9 in	
5-year	2.8 in – 3.7 in	
10-year	3.3 in – 4.4 in	
25-year	3.9 in – 5.0 in	
50-year	4.4 in – 5.6 in	
100-year	4.8 in – 6.2 in	

Variability in Rainfall Intensity Total amount vs. time

Recurrence Period	Minneapolis-St. Paul 24-hr rainfall (in)	Minneapolis-St. Paul 1/2-hr rainfall (in)
1-year	2.3	0.9
2-year	2.8	1.1
5-year	3.5	1.45
10-year	4.1	1.65
25-year	4.8	1.9
50-year	5.3	2.1
100-year	5.9	2.4

Abstractions

Depression Storage

- flat
- rolling
- steep
- roof sloped vs flat
- pavement

Abstractions

Interception • Trees • big vs little Species Prairie grass Corn Pavement

Regional Variations

EPA Level III/MPCA Level IV Ecoregions

Legend

PCA Level III and IV Ecoregions LEVEL3_NAM

Driftless Area
Lake Agassiz Plain
North Central Hardwoods
Northem Glaciated Plains
Northem Lakes and Forests
Northem Minnesota Wetlands
Western Corn Belt Plains

MN DNR Ecological Sections

Ecological_Sections SECNAME

Lake Agassiz, Aspen Parklands
Minnesota & NE Iowa Morainal
N. Minnesota & Ontario Peatlands
N. Minnesota Drift & Lake Plains
North Central Glaciated Plains
Northerm Superior Uplands
Paleozoic Plateau
Red River Valley
Southern Superior Uplands
Western Superior Uplands

Soils – Hennepin County

Hydrologic Soil Groups

- A High infiltration rates. Low runoff Potential.
- B Moderate infiltration rates. Low to medium runoff potential.
- C Slow infiltration rates. Medium to high runoff potential.
- D Very slow infiltration rates. High runoff potential.

Water

Soils – Minnetonka wayzata

Hydrologic Soils Group

- Undefined/Urban Soils A - High Infiltration Rates A/D - If Drained, acts as HSG A B - Moderate Infiltration Rates B/D - If Drained, acts as HSG B C - Slow Infiltration Rates
- C/D If Drained, acts as HSG C
- D Very Slow Infiltration Rates

"Make everything as simple as possible, but not simpler."

- Albert Einstein

Average Annual Runoff Variability in MN

Introduction: Performance Goal Alternative Evaluation

Introduction: Performance Goal Alternative Evaluation

Goal: Mimic a site's natural hydrology

Another way of thinking of this...

Limit post-construction runoff to a volume equal to or less than the <u>pre-settlement</u> <u>condition</u> based on <u>average annual</u> <u>precipitation</u> vs single event precip.

Three Common Volume Control Methodologies

 Retain runoff volume on-site equal to one inch of runoff from proposed impervious surface

SIMPLE!!

Average Annual Runoff Variability in MN

Three Common Volume Control Methodologies

- Retain the post-construction runoff volume on site for the 95th percentile storm (1.4 inches in Minneapolis).
 - Use CN method to calculate runoff volume from pervious and <u>impervious</u> areas

- No Pre-settlement calculation required

95th Percentile Storm ~ 1.4 inches

Three Common Volume Control Methodologies

3. Limit post-construction runoff from a 1-, 2-, and 5-year 24-hour design storm to a volume equal to or less than the pre-settlement condition.

Return Frequency	Twin Cities Rainfall Depth 24-hour Storm Event (TP-40)
1-year	2.3 in.
2-year	2.8 in.
5-year	3.5 in.

Variability in 1-year, 24-hour Rainfall in MN

Three Common Volume Control Methodologies

BARR

Three Common Volume Control Methodologies

BARR

Volume Retention Analysis for Two Development Scenarios

Scenario #1: 40-acre Residential Site 30% Impervious

<u>Scenario #2:</u> 10-acre Commercial Site 80% Impervious

1-inch of Runoff from Impervious Surfaces

Retain Runoff from 95th Percentile Storm

BARR

Limit Runoff to Pre-settlement (1-yr, 24-hr)

Required Volume Retention 40-acre Residential Site (30% Impervious)

BARR

Volume Retention Analysis- Residential Site

Volume Retention Analysis- Commercial Site

How to evaluate the volume control methodologies?

- Feasibility
 ✓ Land Footprint
 ✓ Cost
- % Rainfall Captured
- Does it MIMIC NATURAL HYDROLOGY??

Comparison of BMP Land "Footprints"

- "Footprint" = area required for BMP implementation
- Footprint estimated using bioretention basin to achieve volume control

 Sized to drain in 48 hours

Soil Type	Infiltration Rate (in/hr)	Max Depth of Basin (ft)
А	0.8	1.5
В	0.3	1.2
С	0.2	0.8
D	0.03	0.1

BMP Footprint Comparison- Residential Site

BMP Footprint Comparison- Commercial Site

BMP Footprint Comparison- Commercial Site

% Rainfall Captured

Assess Mimicry of Natural Hydrology

- Develop long-term continuous simulation model to estimate average annual <u>pre-</u> <u>settlement</u> runoff
- Use model to evaluate how volume control standards mimic pre-settlement runoff
- Useful tool for answering complex questions

Questions?

finnesota: Current 1-Day Observed Precipitation /alid at 9/23/2010 1200 UTC - Created 9/23/10 15:42 UTC

Flow Duration Curve

Legislation Review

The agency shall develop performance standards design standards, or other tools to enable and promote the implementation of low-impact development and other stormwater management techniques. For the purposes of this section, "low-impact development" means an approach to storm water management that mimic's a site's natural hydrology as the landscape is developed. Using low-impact development approach, storm water is managed on-site and the rate and volume of predevelopment stormwater reaching receiving waters is unchanged. The calculation of predevelopment hydrology is based on native soil and vegetation.

Historic Annual Average Precipitation

