#### Linear and Redevelopment

# MIDS Work Group April 19, 2013



resourceful. naturally.



- Review linear and redevelopment projects to determine
  - -Water quality performance as designed
  - Do sites meet retention recommendation?
  - Can site designs be modified to meet retention recommendation?
    - Conceptual design of retention BMPs
    - Water quality performance with BMPs



## Project Examples – Linear

- Criterion = 0.5" retention from impervious area
- TH 610 Phase 1 (Fernbrook to Hemlock)





Source: Bing

resourceful. naturally.



## TH610 Drainage Areas

- Project includes off-site drainage area
- Impervious area = 55% of total area

|              | Impervious<br>(acres) | Pervious<br>(acres) | Total<br>(acres) |
|--------------|-----------------------|---------------------|------------------|
| Hennepin Co. | 11                    | 0                   | 11               |
| Maple Grove  | 67                    | 95                  | 162              |
| MnDOT        | 63                    | 13                  | 76               |
| Total        | 141                   | 108                 | 249              |



## TH610 Drainage Areas

- MnDOT total area = 31% of total area
- MnDOT impervious area = 25% of total area

|              | Impervious<br>(acres) | Pervious<br>(acres) | Total<br>(acres) |
|--------------|-----------------------|---------------------|------------------|
| Hennepin Co. | 11                    | 0                   | 11               |
| Maple Grove  | 67                    | 95                  | 162              |
| MnDOT        | 63                    | 13                  | 76               |
| Total        | 141                   | 108                 | 249              |



## TH610 Existing Models

- Existing P8 model covers 204 acres
  - MnDOT drainage area and BMPs included
  - -135 acres of non-MnDOT area included
    - Pervious area with composite CN
- Existing HydroCAD and P8 models exclude 44 acres of non-MnDOT area
  - BMPs evaluated are sized for MnDOT impervious area



# TH 610 – Existing Performance

- **Existing BMPs:** 
  - 7 wet ponds
  - 2 drainage ditches (1 wet, 1 dry)
  - Minimal volume reduction
- P8 models
  - with and without ditch infiltration
- MIDS calculator



#### **Existing Pollutant Removals**



BARI

# TH 610 – Conceptual BMP Design

- Retention requirement based on MnDOT impervious are = 2.46 acre-feet
- Site limitations
  - Limited ROW area
  - Rate control requirements
- Convert 4 wet ponds to infiltration basins



Photo: Barr Engineering Company

Add upstream sump pretreatment



### TH 610 – Conceptual BMP Performance



Note: removals based on loading from on-site and off-site drainage areas



## Project Examples – Redevelopment

- Multiple criteria evaluated
  - 0.4" retention from impervious area
  - 0.8" retention from impervious area
  - 1.1" retention from impervious area
- Project examples include:
  - Penn & American Phase II
  - R&D Hematology

#### Redevelopment – Penn & American



- Project area = 8.6 acres
- Impervious = 5.1 acres (59%)
- HydroCAD model provided
  - Drainage to four outlets
- No water quality model
  - Volume retention satisfies
    WQ requirements



- Existing BMPs:
  - Underground storage
  - Small infiltration area
  - 6 pervious pavement areas
  - Large infiltration basin (downstream of several BMPs)



Photos: Barr Engineering Company







- Existing BMPs provide > 1.1" of retention from impervious areas (cumulative)
  - Excess retention volume upstream of Outlet 1 (large infiltration basin)
  - Insufficient retention volume upstream of Outlets 2, 3 and 4
- Performance estimated with MIDS calculator



• Performance upstream of Outlet 1 is greater than overall site performance





## Penn & American – Conceptual BMPs

- Total on-site volume retention > 1.1" from impervious areas
  - -No additional BMPs
  - Re-route drainage to utilize excess capacity in large infiltration basin
- Increases total discharge to Outlet 1
  - Rate control increases relative to existing condition (but less than pre-project)



#### Penn & American – Conceptual BMPs





#### Penn & American – Conceptual BMP Performance

 Pollutant removal from overall site improves from 87% to 98% with rerouting





#### Penn & American – Conceptual BMP Performance

- Re-routing achieves retention > 1.1" from total impervious area
- Existing BMPs were downsized to achieve overall site retention of 0.4", 0.8", and 1.1"
  - Where volume (as designed) did not meet criteria, BMP routed through large infiltration basin

#### Penn & American – Conceptual BMP Performance

• Pollutant removal ranges from 78% to 98%





#### Redevelopment – R&D Hematology

- Project area = 2.5 acres
- 96% impervious area
- Large underground storage tank
  - Contaminated soils
- HydroCAD model





## R&D Hematology – Existing Performance

- Existing WQ assumes NURP pond performance
- No volume reduction





## R&D Hematology – Conceptual BMPs

- Site conditions do not support infiltration
  - Without volume reduction, maximum achievable
    TP reduction is 55% (MIDS calculator)
  - Alternative BMPs necessary to achieve greater performance (e.g., iron-enhanced filtration)
- Infiltration BMPs evaluated for comparison



## R&D Hematology – Conceptual BMPs

- Underground storage replaced with underground infiltration basin(s)
  - Sized for 0.4", 0.8", and 1.1" from impervious area
    (0.08, 0.16, and 0.22 acre-feet, respectively)
- Sump pretreatment added upstream of infiltration
- Outlet modified to maintain peak rate control



#### R&D Hematology – Conceptual BMP Performance





#### Summary

- Linear Case Study
  - -TH610 Fernbrook to Hemlock
- Redevelopment Case Studies
  - Penn & American Phase II
  - R&D Hematology
- Drainage areas range from 2.5 to 200+ acres
- Impervious areas range from 55% to 96%



#### Summary

- Site limitations pose challenges to achieving volume retention goal
  - -Limited footprint for BMPs
  - Unsuitable soil conditions for infiltration
  - -Competing goals (e.g., rate control)
- When infiltration is possible, goals of 0.8" and 1.1" resulted in TP reduction of >90% among redevelopment projects

p-gen3-15d

