Volume Loss from Biofiltration Basins with Drain Tile

MIDS Work Group January 18, 2013

p-gen3-14v

Background

- Re-evaluating November 2012 MIDS workgroup meeting:
 - Barr suggested zero volume reduction for systems with drain tile at the bottom
 - Work Group asked that volume be quantified
- Walk through approach to quantify volume reduction
- Examples
 - Biofiltration basin in C & D soils
 - Biofiltration basin with Elevated Draintile

Bioretention/Biofiltration Variations

Quantifying Reduction in Runoff Volume

Goal: quantify water "loss", versus temporary water storage or off-site discharge

Key Question: What are the mechanisms for water loss?

- Evapotranspiration (ET)
- -Infiltration

Bioretention Basin without Drain Tile

Bioretention Basin without Drain Tile

Biofiltration Basin with Drain Tile

But there's some volume loss, even with a drain tile, right?

Quantifying Volume Losses

Goal: To quantify the volume of captured water that will infiltrate or be lost to ET

- evaluated on an event basis to determine conformance with the 1.1-inch performance goal

Let's start by looking at volume loss from ET

Quantifying Loss via Evapotranspiration

When it rains, water is stored in the filter media and utilized by plants

How much water is stored in the filter media and <u>available</u> for plant utilization?

For a BMP sized for 10-acre, 50% impervious site:

 Available water at field capacity approximately <u>3,000 ft³</u>

• So how much of the 3,000 ft³ will be lost to evapotranspiration?

Quantifying Loss via Evapotranspiration

- Evapotranspiration varies based on many factors, including:
 - Plant type
 - Plant density
 - Weather conditions
- Approximately 20 inches of ET per year in Twin Cities area

Pan evaporation variation throughout growing season

Source: Climate of Minnesota Part XII- The Hydrologic Cycle and Soil Water, U of MN

BARR

Quantifying Loss via Evapotranspiration

Assumptions to quantify ET volume loss from BMP on an event basis:

- Average daily pan evaporation rate = 0.2 inches
- Factor to convert pan evaporation to ET = 0.5
- Duration of ET = 72 hours ("typical" time period between precipitation events)

Evapotranspiration is the limiting factor

For a BMP sized for 10-acre, 50% impervious site:

- Available water at field capacity is <u>3,000 ft³</u>
- ET Loss in 72 hours = <u>366 ft³</u>

ET losses are limiting

How does this relate to our 1.1-inch performance goal?

For a BMP sized for 10-acre, 50% impervious site:

- Performance goal of 1.1 inches off impervious area = 19,965 ft³
- ET Loss = 366 ft³/19,965 ft³

= 2% of performance goal

Quantifying volume loss from infiltration

During the time that water drains through the drain tile, some infiltration will occur from:

- Basin Bottom
- Basin Sides

Infiltration from Bottom of Basin

Loss from bottom =

Bottom Area * Infiltration Rate of Underlying Soils * 48 hours

Bottom Surface Area

Infiltration from Bottom of Basin

For a BMP sized for 10-acre, 50% impervious site on D soils:

Loss from bottom:

= Bottom Area * Infiltration Rate of Underlying Soils * 48 hours

= (85 ft)² * 0.06 in/hr * 48 hr * (1 ft/12 in) = <u>1,734 ft³</u>

Infiltration from side slopes of basin

•When unsaturated conditions in media, infiltration from side slopes will be very small (easier for water to go toward drain tile than into sides)

Infiltration from side slopes of basin

•When saturated conditions in media (drain tile is restricting flow), infiltration from side slopes is likely.

Infiltration from side slopes of basin

Loss from sides =

Side Slope Area* Infiltration Rate of Underlying Soils * 24 hr

Bottom Surface Area (A_B)

- Side Slope Area = $A_0 A_B$
- 24 hours reflects average duration of infiltration from sides

Infiltration from Side Slopes of Basin

For a BMP sized for 10-acre, 50% impervious site on D soils:

Loss from side slopes:

- = Side Slope Area* Infiltration Rate of Underlying Soils * 24 hr
- = [(121 ft)² (85 ft)²] * 0.06 in/hr * 24 hr * (1 ft/12 in)

= <u>890 ft³</u>

Quantifying total volume loss from infiltration

Total Loss from Infiltration (bottom + sides) = 1,734 ft³ + 890 ft³ ⁼ 2,624 ft³

How does this relate to the 1.1-inch performance goal?

- Performance goal of 1.1 inches = 19,965 ft³
- Infiltration Loss = 2,624 ft³/19,965 ft³ = 13% of performance goal

Quantifying volume losses for systems with drain tile

For a BMP sized for 10-acre, 50% impervious site on D soils:

- Total volume loss = ET Loss + Infiltration Loss*
 - = 366 ft³ + 2,624 ft³
 - = 2,990 ft³

% of Performance Goal = 2,990 ft³ / 19,965 ft³

* Note that side slope loss assumes saturated media conditions

Biofiltration Basin with Elevated Drain Tile

With elevated drain tile, volume losses from infiltration increase

Question: How to credit additional volume loss on an event basis?

Biofiltration Basin with Elevated Drain Tile

Loss from bottom (with elevated drain tile) = Bottom Area*Infiltration Rate of Underlying Soils * 4872 hrs

•Additional 24 hours is allowed for bottom area to drain

Infiltration losses from the basin bottom

For the same BMP sized for 10-acre, 50% impervious site, but with 1-foot of media below drain tile:

Loss from bottom (with elevated drain tile) =

Bottom Area*Infiltration Rate of Underlying Soils * 72 hrs

= 2,134 ft³ (vs. 1,734 ft³ for non-elevated drain tile)

Infiltration from side slopes of basin with elevated drain tile

Loss from sides above drain tile = same as previous side slope computation

Losses from sides below drain tile =

Side Slope Area* Infiltration Rate of Underlying Soils * 60 hr

Bottom Surface Area (A_B)

- Side Slope Area = $A_{DT} A_{B}$
- 60 hours reflects average duration of infiltration from sides (48 hours + additional drainage time ranging from zero at drain tile to 24 hrs at bottom.

Infiltration losses from the basin sides

For the same BMP sized for 10-acre, 50% impervious site, but with 1-foot of media below drain tile:

Loss from sides above elevated drain tile = 890 ft^3

Loss from sides below elevated drain tile = 467 ft^3

Total loss from side slopes = 890 ft³ + 467 ft³ = 1,357 ft³

Quantifying volume losses for systems with elevated drain tile

For a BMP sized for 10-acre, 50% impervious site on D soils:

- Total volume loss = ET Loss + Infiltration Loss*
 = 366 ft³ + 2,134 ft³ (bottom) + 1,357 ft³ (sides)
 - = 3,857 ft³

% of Performance Goal = $3,857 \text{ ft}^3 / 19,965 \text{ ft}^3$

* Note that side slope loss assumes saturated media conditions

How do the volume losses vary with a "C" soil?

Non-elevated drain tile:

For the same BMP sized for 10-acre, 50% impervious site on D soils:

- Total volume loss
 = 9,112 ft³
- % of Performance
 Goal = 45%

(vs 15% for D soils)

How do the volume losses vary with a "C" soil?

Non-elevated drain tile:

For the same BMP sized for 10-acre, 50% impervious site on D soils:

- Total volume loss
 =11,743 ft³
- % of Performance
 Goal = 59%

(vs 19% for D soils)

Questions?

