

Memorandum

To: MIDS Work Group

From: Barr Engineering Company

- Subject: MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and Pollution Reduction
- Date: Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011Project: 23621050.00 MIDS

The goal of MIDS Subtask 2.1(1) is to review existing credit methodology systems used to assess development runoff impacts, evaluate the credit methodology systems, and recommend a credit methodology system approach that will allow for the user to evaluate runoff impacts. For the purposes of this memorandum, a *credit methodology system* is defined as documented procedures that provide a calculation foundation for low-impact design (LID) techniques. LID, as defined per the MIDS legislation, is an approach to stormwater management that mimic's native soil and vegetation hydrology so that the rate and volume of the predeveloped stormwater reaching receiving waters is unchanged. For MIDS, predevelopment hydrology is based on native soil and vegetation.

A summary table listing all Barr-reviewed credit methodology systems, including those not included in this memorandum, can be found in the Appendix.

Introduction and Summary

Barr initially screened fifteen available credit methodology systems through goal assessment and criteria evaluation to determine their usefulness in achieving MIDS legislation. This screening process and results are discussed on Pages 2 through 6 of this memorandum. Based on the screening, six credit methodologies were selected for in-depth review. Barr's summary of six credit methodology system features (documentation, calculation foundations and performance standards) is discussed on Pages 6 through 8. Our review of the procedures and pros and cons of each of these six credit methodology systems is presented on Pages 9 through 13. Finally, our suggestions for a MIDS credit methodology system are provided on Pages 13 through 15.

Barr Engineering Co. 4700 West 77th Street, Suite 200, Minneapolis, MN 55435 952.832.2600 www.barr.com

Common Goals of Credit Methodology Systems

Barr looked at the goals of fifteen different credit methodology systems. The fifteen systems were chosen primarily due to the level of documentation provided for the system and applicability to most development sites. Five common goals of the credit methodology systems were:

Pollutant Loading- determines the pollutant loading rate to receiving waters.

Groundwater Recharge Volume- determines the infiltration volume required to provide groundwater recharge.

Water Quality Volume/Stormwater Runoff Volume- determines the runoff volume required to provide a specific amount of water quality treatment.

Channel Protection Volume- determines the bankful and sub-bankful volume required to control stream erosion.

Stormwater Runoff Rate- determines the peak flow rate to receiving waters.

Other calculation goals used a combination of the above goals to determine an ultimate calculation goal such as impervious area mitigation.

Table 1 summarizes the credit methodology system goals by entity.

To: MIDS Work Group

From: Barr Engineering Company

- Subject: MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and Pollution Reduction
- Date: Draft Memorandum: December 21, 2010; Final Memorandum June 12, 2011

Page: 3

Project: 23621050.00 MIDS

Table 1. Credit Methodology System Goals by Entity

		Entity													
Criteria	City of Seattle	Georgia	Florida	Kitsap County, Washington	Maryland	Massachusetts	Minnesota	New Hampshire	New Jersey	Pennsylvania	Purdue University	Rhode Island	Stearns County, Minnesota	Ventura County, California	Virginia
Pollutant Loading			Х					Х		Х	Х	Х	Х		Х
Groundwater Recharge Volume					Х	Х			Х			Х			
Water Quality Volume/Stormwater Runoff Volume		Х		Х	Х	Х	Х			Х	Х	Х		Х	Х
Channel Protection Volume					Х		Х					Х			
Stormwater Runoff Rate				Х										Х	Х
Other	Х													Х	

Credit Methodology System Comparison

Barr compared the credit methodology systems of the fifteen entities based on the extent to which the following seven criteria applicable to MIDS legislation were met.

Native Hydrology Mimicry- the methodology encourages rate and volume control to predevelopment conditions.

LID Promotion- the methodology encourages LID design, including natural area conservation, site reforestation, runoff routing to increase flow length and infiltration, and minimization of impervious area.

Pollutant Loading Estimation- the methodology provides pollutant loading output for use in TMDL and anti-degredation goal assessment.

Scientific Evaluation- the methodology is based on scientific research and principles.

User Friendliness- the methodology calculation tool is easy to use based on learning time, simplicity, input method, and level of effort required for iterative process design changes.

Input Standardization- the methodology ensures that inputs for calculation are consistent for BMP design and performance, which reduces subjectivity.

BMPs Treatment Train Inclusion- the methodology includes credit for BMPs in series or parallel.

Table 2 summarizes the criteria achievement for the fifteen credit methodology systems.

To: **MIDS Work Group** Barr Engineering Company From: MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System Subject: of MID Credits that Account for Both Runoff and Pollution Reduction Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011 Date: 5 Page: Project: 23621050.00 MIDS

		T	able 2.	Credit M	ethodol	ogy Sysi	em Con	nparison	by Entit	у					
-	Entity														
Criteria	City of Seattle	Georgia	Florida	Kitsap County, Washington	Maryland	Massachusetts	Minnesota	New Hampshire	New Jersey	Pennsylvania	Purdue University	Rhode Island	Stearns County, Minnesota	Ventura County, California	Virginia
Native Hydrology Mimicry	•	\bigcirc	0		\bullet	•	\bigcirc	\bullet	0		\bullet	•	•	0	\bullet
LID Promotion									\bigcirc				\bigcirc		
Pollutant Loading Estimation	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc		\bigcirc			•		\bigcirc	
Scientific Evaluation		\bigcirc					\bigcirc								
User Friendliness	•	\bullet	0	•	\bullet	•	\bullet	\bigcirc	\bigcirc	\bullet	\bullet	\bigcirc		\bigcirc	٠
Input Standardization		\bigcirc	0			\bullet	\bigcirc	\bullet	\bullet	\bullet				0	
BMP Treatment Train Inclusion	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	•	\bigcirc	\bigcirc	

O = Does Not Meet Criteria

• = Moderately Meets Criteria

• = Significantly Meets Criteria

Entities listed in bold = Entities with Credit Methodology Systems selected for further evaluation

To:	MIDS Work Group
From:	Barr Engineering Company
Subject:	MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
-	Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
	Pollution Reduction
Date:	Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011
Page:	6
Project:	23621050.00 MIDS

Based on Table 2, the six entities selected for further analysis included Florida, Kitsap County, Pennsylvania, Purdue, Stearns County, and Virginia. The names of the selected entities are in bold in Table 2. The City of Seattle and Kitsap County have similar approaches, but Kitsap County's credit goals of stormwater runoff rate and water quality volume are more directly oriented to MIDS goals than the City of Seattle's goal of impervious area mitigation.

Credit Methodology System Features

To meet credit methodology system goals, entities had varying documentation and calculation foundations. These are described in detail for each of the entities in this section. A review of the system is then provided summarizing the methodology procedures and identifying the pros and cons of each system.

Documentation

The primary credit methodology system documents used by the various entities to assess goal fulfillment are shown in Table 3 with an evaluation of the content as fair, good or excellent based on readability, completeness and/or ease of use. The entities that were found to be the most user-friendly tended to include well-written instructions and a simple calculator.

Entity	Name of Tool	Methodology Procedure Guidance	Methodology Calculator Instructions	Spreadsheet Calculator	Online Calculator
Florida	Stormwater Quality Applicant's Handbook	Fair	None	None	None
Kitsap County	Kitsap County BMP Sizing Calculator	Excellent	Excellent	Excellent	None
Pennsylvania	Stormwater Calculation Process	Good	None	None	None
Purdue	Long Term Hydrologic Impact Analysis (L-THIA) Low Impact Development Spreadsheet	Excellent	Excellent	Excellent	Good
Stearns County	Stearns County Pollutant Loading Model	Good	None	Good	None
Virginia	Runoff Reduction Method	Good	Good	Excellent	None

To:	MIDS Work Group
From:	Barr Engineering Company
Subject:	MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
	Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
	Pollution Reduction
Date:	Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011
Page:	7
Project:	23621050.00 MIDS

Calculation Foundations and Performance Standards

Table 4 summarizes the calculation foundations and the performance standards for the credit methodology system goals. The goals for the entities selected for further analysis only included three of the five common goals previously listed: Pollutant Loading, Water Quality Volume/Stormwater Runoff Volume, and Stormwater Runoff Rate. The other two common goals, Groundwater Recharge Volume and Channel Protection Volume, are not directly calculated by the methodology but are often ultimately included as a result of the performance standards.

To: MIDS Work Group From: Barr Engineering Company Subject: MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and Pollution Reduction Date: Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011 Page: 8 Project: 23621050.00 MIDS

Table 4. Credit Methodology System Calculation Foundations and Performance Standards

		Goal			
Entity	Pollutant Loading	Water Quality Volume/ Stormwater Runoff Volume	Stormwater Runoff Rate		
Florida	Foundation: Simple Method, BMP RR Standard: 85% reduction or pre = post load for TP, TN				
Kitsap County		Foundation: WWHM3, Runoff RR Standard: Infiltrate 91% of runoff volume for period modeled (annual or extended timeseries)	Foundation: WWHM3 Standard: Match peak flow rates and durations from ½ of 2-year to 50- year for predeveloped woods		
Pennsylvania	Foundation: Simple Method, BMP RR Standard: Sites with ≤ 90% of site controlled by BMPs must show 85% TSS, TP reduction and 50% TN reduction	Foundation: User Design Standard: PRV= 1" X IA, EDV= 1" x IA	Foundation: User Modeled Standard: Match peak flow rates for 2-year to 100-yr, 24-hr event for predeveloped conditions		
Purdue	Foundation: Simple Method, BMP RR Standard: N/A	Foundation: SCS Method Standard: N/A			
Stearns County	Foundation: P8 Standard: presettlement/15% IA = post load for TSS, TP				
Virginia	Foundation: Simple Method, BMP RR Standard: 0.28 lbs/acre/yr TP, 2.68 lbs/acre/yr TN	Foundation: Runoff RR Standard: Capture water quality event = 90 th percentile rainfall depth (one inch)	Foundation: User Modeled with adjusted CN Standard: Q _{post} ≤ (V _{forested} / V _{post}) x Qpeak _{forested} for design storm event		

Key:

BMP RR- BMP Removal Rate

CN- Curve Number

EDV- Extended Detention Volume

IA- Impervious Area

P8- P8 Urban Catchment Model by William W. Walker, Jr.; performs continuous simulation modeling

PRV- Permanently Removed Volume

Qpeak_{forested}- Peak Flow Rate for Development in Forested Conditions

Qpost- Peak Flow Rate for Post Development Conditions

Runoff RR- Runoff Reduction Rate

SCS Method- Soil Conservation Service Runoff Curve Number (CN) Method

Simple Method- Simple Method by Tom Schueler; annual load= annual runoff x pollutant concentration x area

TSS- Total Suspended Solids

TP- Total Phosphorus

TN- Total Nitrogen

User Design- user determines the volume removed by the BMP

User Modeled- user models BMPs to determine rate control provided

WWHM3- Western Washington Hydrology Model, Professional Version 3; performs continuous simulation modeling

To:	MIDS Work Group
From:	Barr Engineering Company
Subject:	MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
	Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
	Pollution Reduction
Date:	Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011
Page:	9
Project:	23621050.00 MIDS

System Review

Table 5 describes the procedure, pros and cons of each credit methodology system.

Entity	Procedure	Pros	Cons
Florida	 Summary: User chooses BMPs to achieve pollutant load reduction and uses BMP sizing design criteria that are presumed to meet performance standards based on continuous simulation modeling and water quality literature review. Calculation Documentation: User completes written calculations Calculation Procedure: Determine downstream water body and select performance standard Calculate post-development loading without treatment using Event Mean Concentrations (EMCs) and annual runoff volume (using curve number [CN] based data) Determine which BMPs will meet load reduction performance standard as determined by retention depth (using CN based data) 	 Standard inputs provided per meteorological zone include: EMCs Retention depth to meet 85% load removal Mean annual runoff coefficients as a function of directly and non- directly connected impervious area Mean annual load reduction efficiencies per retention depth as a function of directly and non-directly connected impervious area Equation and examples for treatment trains provided 	Is still draft procedures with cumbersome instructions and examples User can still select CN values, which does not ensure consistency/is subjective Does not include rate control calculation

Table 5. Credit Methodology Review

 To:
 MIDS Work Group

 From:
 Barr Engineering Company

 Subject:
 MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and Pollution Reduction

Date: Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011

 Page:
 10

 Project:
 23621050.00 MIDS

Entity	Procedure	Pros	Cons
Kitsap County	 Summary: User chooses BMPs to achieve rate control and water quality volume reduction and uses BMP sizing design criteria that are presumed to meet performance standards based on continuous simulation modeling and runoff reduction literature review. Calculation Documentation: User enters information into spreadsheet calculator Calculation Procedure: Flow Control Calculator: Enter mean annual precipitation, impervious area Iteratively select BMP configuration until flow control standard is achieved Water Quality Calculator: Enter mean annual precipitation, impervious area Iteratively design bioretention cell until water quality standard is achieved 	Sizing factors are based on a combination of mean annual precipitation, impervious area, and infiltration rates, and does not allow subjective CN values Good guidance documents and calculator instructions Easy-to-use spreadsheet calculator Includes many BMPs Includes rate control calculation in spreadsheet calculator Promotes LID by including credit for tree retention and planting and flow dispersion	Does not provide pollutant loading output Does not include treatment train calculation

To:MIDS Work GroupFrom:Barr Engineering CompanySubject:MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
Pollution ReductionDate:Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011Page:11Project:23621050.00 MIDS

Entity	Procedure	Pros	Cons
Pennsylvania	 Summary: User follows 13- step process to demonstrate compliance for non- structural BMP inclusion, water quality volume control (based on user-documented design), and pollutant loading reduction (based on water quality literature review values). Calculation Documentation: User completes worksheets Calculation Procedure: Provide general site information Identify sensitive areas Identify and quantify benefits of non-structural BMPs Calculate runoff capture volume (either a CN based guideline or impervious area based guideline) Design BMPs and document volume stored for each BMP Provide routing analysis to demonstrate peak rate control for 2-year through 100-year storm events Calculate pollutant loading reduction for the site; calculations required vary depending on volume control provided and percentage of site controlled by BMPs 	Standard inputs provided include: • Event Mean Concentrations • BMP removal efficiencies Simple process and worksheets Includes equations for removal efficiencies of BMPs in series and parallel	BMP removal efficiencies and design standards are independent in this process, which does not ensure consistency between users; a BMP can be designed with different configurations and will still be credited the same removal efficiency User can still select CN values, which does not ensure consistency/is subjective Must provide separate routing analysis for rate control

To:MIDS Work GroupFrom:Barr Engineering CompanySubject:MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
Pollution ReductionDate:Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011Page:12Project:23621050.00 MIDS

Entity	Procedure	Pros	Cons
Purdue	Summary: User enters development information and BMPs to screen to estimate runoff volume and pollutant loading for pre and post-development conditions based on SCS Methodology and water quality literature review. Calculation Documentation: User enters information into online or spreadsheet calculator Calculation Procedure: • Enter state and county, land use, lot size, soil type, land use change, and BMPs (either as basic LID screening or specific, lot-	Online calculator for easy accessibility and use CN inputs for pre and post- development are standardized per cover type Promotes LID by encouraging impervious area minimization	Hard to change inputs using online version; spreadsheet version allows for greater flexibility Does not include treatment train calculation Does not include rate control calculation
Stearns County	level BMPs)Summary: User enters lotinformation to estimatepollutant loading forpresettlement, 15%impervious cover, andproposed conditions basedon linear regression analysisfor P8 model output. BMPevaluation identifies whethera typically sized infiltrationBMP will maintain allowableloading thresholds.Calculation Documentation:User enters information intospreadsheet calculatorCalculation Procedure:• Enter lot size, soil type, andcover information	CN inputs for pre and post- development are standardized per cover type Easy-to-use spreadsheet calculators for target post- development loading to equal either presettlement or 15% impervious thresholds	Limited to 0.25 to 2.0 acres lot size and impervious area of 5% to 50% of lot area BMP evaluation limited to bioretention, infiltration trench, and buffer strip Does not directly promote LID by encouraging conservation and imperious area minimization Does not include treatment train calculation Does not include rate control calculation

 To:
 MIDS Work Group

 From:
 Barr Engineering Company

 Subject:
 MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and Pollution Reduction

 Date:
 Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011

 Page:
 13

 Project:
 23621050.00 MIDS

Entity	Procedure	Pros	Cons
Virginia	 Summary: User follows 3-step process which includes non-structural BMP inclusion, water quality storm event volume control (based on runoff reduction literature review), and pollutant loading reduction (based on water quality literature review). Calculation Documentation: User enters information into spreadsheet calculator Calculation Procedure: Non-Structural BMPs (Site Data) Enter land cover information for forest, managed turf, and impervious Water Quality Compliance Iteratively enter, for each drainage area, area to be treated by given BMP, and, If applicable, select downstream BMPs to be employed until target load reduction is achieved Channel and Flood Protection Enter rainfall depths for 1, 2, and 10-year, 24-hour events Use adjusted CN provided for each drainage area to calculate peak discharges for the 1,2, and 10-year, 24-hour events 	Runoff coefficient inputs for post-development are standardized per cover type Easy-to-use spreadsheet calculator Includes many BMPS Includes treatment train calculation in spreadsheet calculator	Many documents to sift through to understand process Must provide separate routing analysis for rate control Stormwater management regulations for Virginia are not finalized

MIDS Work Group Directions and Goals for Tracking System

The preceding draft memorandum was presented to the MIDS Work Group and Barr asked for the group's input.

Based upon review of available credit methodologies, the MIDS legislation, expected primary and secondary calculator users, and demonstrations of the Virginia calculator and the Capitol Region

To:	MIDS Work Group
From:	Barr Engineering Company
Subject:	MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
	Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
	Pollution Reduction
Date:	Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011
Page:	14
Project:	23621050.00 MIDS

Watershed District/Ramsey-Washington Metro Watershed District calculator, the MIDS Work Group determined that the credit tracking system/calculator should:

- provide an incentive for incorporating low impact development (LID) techniques onto a site
- determine the stormwater volume control required on the site
- determine TP and TSS removal
- provide volume and pollutant removal credit for BMPs in parallel and in series
- focus on pollutant removals for sites with Hydrologic Soil Group D soils
- not replace existing models, such as HydroCAD, for calculating and showing conformance to stormwater peak runoff rate requirements

The Virginia credit tracking calculator performs most of these functions and was adapted to Minnesota's needs in the creation of a draft beta version MIDS calculator. The foundation for defining the actual MIDS credits for some BMPs is based on the Barr modeling that had already been completed for other MIDS subtasks. Defining MIDS credits for other BMPs is based on literature review of runoff reduction amounts and pollutant removal efficiencies. Barr and the MPCA suggested that a Credit Council be formed to define and redefine MIDS credits in the future.

References

City of Seattle

City of Seattle, 2009. Stormwater Manual. Volume 3: Stormwater Flow Control and Water Quality Treatment Technical Requirements Manual. November.

City of Seattle Green Stormwater Infrastructure Requirement Calculator, 2009. November.

Georgia

Georgia Stormwater Manual, 2001. Volume 2, Section 1.4: Stormwater Better Site Design. August.

Florida

Breitrick, David, P.E., 2008. "Statewide Stormwater Treatment Rule." Consultant's Update. 3rd Quarter.

Environmental Research & Design, Inc., 2007. Evaluation of Current Stormwater Design Criteria within the State of Florida. June.

To:	MIDS Work Group
From:	Barr Engineering Company
Subject:	MIDS Subtask 2.1(1): Review Methods, Models and Spreadsheets Used to Track Runoff Reduction at
	Development Sites and Recommend Integrated System of MID Credits that Account for Both Runoff and
	Pollution Reduction
Date:	Draft Memorandum: December 21, 2010; Final Memorandum: June 12, 2011
Page:	15
Project:	23621050.00 MIDS

Florida Department of Environmental Protection and Water Management Districts, 2010. DRAFT

Stormwater Quality Applicant's Handbook. March.

Kitsap County, Washington

Herrera, 2010. "Stormwater Best Management Practices Simplified Sizing Tool." March.

Kitsap County BMP Sizing Calculator for Flow Control/Water Quality. MS Excel Spreadsheet.

Lancaster, Alice, P.E., 2010. "A Simplified Tool for LID Practices in Western Washington." ASCE Low Impact Development 2010: Redefining Water in the City Conference.

Washington State Department of Ecology, 2001. Stormwater Management Manual for Western Washington. August.

Maryland

Maryland Department of the Environment, 2009. Maryland Stormwater Design Manual. Chapter 5.0: Environmental Site Design.

Massachusetts

Massachusetts Department of Environmental Protection. Massachusetts Stormwater Handbook. Volume 3, Chapter 1: Documenting Compliance.

TSS Removal Calculation Worksheet, 2008. March. MS Excel Spreadsheet.

Minnesota

Minnesota Pollution Control Agency, 2008. Minnesota Stormwater Manual. Version 2. January.

New Hampshire

New Hampshire Department of Environmental Services (NHDES), 2008. New Hampshire Stormwater Manual. Volume 1: Stormwater and Antidegredation. December.

NHDES, 2010. DES Simple Method Pollutant Loading Spreadsheet Model. May.

NHDES, 2010. Guidance for Estimating Pre- and Post-Development Stormwater Pollutant Loads. May.

New Jersey

New Jersey Department of Environmental Protection, 2004. New Jersey Stormwater Best Practices Manual. Chapter 6: Groundwater Recharge. April.

New Jersey Groundwater Recharge Spreadsheet. MS Excel Spreadsheet.

Zomorodhi, Kaveh, Ph. D, 2004. "Curve Number and Groundwater Recharge Credits for LID Facilities in New Jersey." Low Impact Development Conference at College Park, Maryland. September.

Pennsylvania

Pennsylvania Department of Environmental Protection (PDEP), 2006. Pennsylvania Stormwater Best Management Practices Manual. December.

PDEP, 2006. DRAFT Pennsylvania Model Stormwater Management Ordinance. May.

Purdue University

Local Government Environmental Assistance Network. Low Impact Development Spreadsheet. Accessed on December 6, 2010: <u>https://engineering.purdue.edu/mapserve/LTHIA7/lthianew/lidIntro.htm</u>

L-THIA LID Model Input Sheet. MS Excel Spreadsheet.

Rhode Island

State of Rhode Island Department of Environmental Management, 2010. DRAFT Rhode Island Stormwater Design and Installation Standards Manual. August.

Stearns County, Minnesota

Emmons & Olivier Resources, 2006. "Stearns County Stormwater Management Analysis, Pollutant Loading Model Development." April.

Stearns County Environmental Services Department, 2007. Stearns County Local Water Management Plan 2006 Annual Report. February.

Stearns County Pollutant Loading Model_15% Threshold. MS Excel Spreadsheet.

Stearns County Pollutant Loading Model_Presettlement Threshold. MS Excel Spreadsheet.

Ventura County, California

Ventura Countywide Stormwater Management Program, 2010. Ventura County Technical Guidance

Manual for Stormwater Quality Control Measures. November.

Virginia

Center for Watershed Protection & Chesapeake Stormwater Network (CWP & CSN), 2008. Technical Memorandum: The Runoff Reduction Method. April

CWP & CSN, 2010. "The Runoff Reduction Method: Stormwater Design to Reduce Runoff Volumes." StormCon Conference.

CWP & CSN. 'The Runoff Reduction Method: Part II- The RRM as a Compliance Tool in Virginia." StormCon Conference.

Virginia Runoff Reduction Method Worksheet, 2009. December. MS Excel Spreadsheet.

Virginia Runoff Reduction Method Worksheet_Redevelopment, 2010. August. MS Excel Spreadsheet.

Virginia Soil and Water Conservation Board. DRAFT 4VAC50-60 Stormwater Management Regulations (Final).

Appendix

Included in				
Memo	Entity	Division	Basis of Calculation	Name of Tool
	CRWD	N/A	Volume Requirement= Runoff Generated From	Capitol Region Watershed District Volume Control Worksheet
			1" of Rainfall	
	CNT	N/A	SCS Method (Volume), Rational Method (Rate)	Green Values Calculator
Х	City of Seattle	Public Utilities, Planning and Development	Pre-designed BMPs	City of Seattle Green Stormwater Infrastructure Calculator
	Dane County, Wisconsin		Base Fee + Disturbed Area + Impervious Area	N/A
Х	Florida (DRAFT)	Environmental Protection	Simple Method (Pollutants)	Stormwater Quality Applicant's Handbook
Х	Georgia	Natural Resources- Environmental Protection	WQV Credit	Site Design Stormwater Credits
X	Congia			
Х	Kitsap County, Washington	Community Development- Development Engineering	Pre-designed BMPs	Kitsap County BMP Sizing Calculator for Flow Control;
				Kitsap County BMP Sizing Calculator for Water Quality
	Knox County, Tennessee	N/A	WQV Credit	Water Quality Volume (WQv) Credits
Х	Maryland	Environment	GRV, WQV, & CPV Credit	Environmental Site Design
х	Massachusetts	Environmental Protection	GRV & WQV Credit	Low Impact Site Design Credit; TSS Removal Calculation Worksheet
Х	Minnesota	MPCA	WQV & CPV Credit	Stormwater Credits and Development
Х	New Hampshire	Environmental Services	Simple Method (Pollutants)	Guidance for Estimating Pre- and Post-Development Stormwater
				Pollutant Loads
Х	New Jersey	Environmental Protection	GRV Credit	New Jersey Groundwater Recharge Spreadsheet
Х	Pennsylvania	Environmental Protection	Simple Method (Pollutants), WQV Requirement= 2 inches x Impervious Area	Stormwater Calculation Process
Х	Purdue University	College of Engineering	Simple Method (Pollutants), SCS Method	Long Term Hydrologic Impact Analysis (L-THIA) Low Impact
			(Volume)	Development Spreadsheet
	RWMWD	N/A	Volume Requirement= Runoff Generated From	RWMWD Watershed District Volume Control Worksheet
			1" of Rainfall	
Х	Rhode Island (DRAFT)	Environmental Management	Simple Method (Pollutants), WQV, GRV, & CPV Credit	Rhode Island Stormwater Design and Installation Standards Manual
	SEMCOC		WOV Crodit	Design Calculation Process
Х	SEMCOG Stearns County, Minnesota	N/A Environmental Services	WQV Credit P8 (Pollutants)	Design Calculation Process Stearns County Pollutant Loading Model
	Town of Tolland, Connecticut	N/A	GRV, WQV, & CPV Credit	Storm Water Credits
Х	Ventura County, California	Planning and Land Development Program	Effective Impervious Area (EIA), WQV = Runoff	Ventura County Technical Guidance Manual for Stormwater Quality
X	ventura county, camornia		Generated from 0.75" Rainfall, Rational Method	Control Measures
			(Rate)	
	VRJPO	N/A	WQV Credit	VRJPO Rules
N N	Vermont	Environmental Conservation	GRV & WQV Credit	Voluntary Stormwater Management Credits
Х	Virginia	Conservation and Recreation	Simple Method (Pollutants), WQV Requirement=	Runoff Reduction Method; Development and Redevelopment
			Runoff Generated from WQ Event, Simplified	Worksheets
			SCS Method (Rate)	

Credit Methodology Summary

		Calculation Goal Primary Calculat					Calculation	Tool Type						
			Impervious	Curr					Life		Written			
Included in Memo	Entity	Pollutant Loading	Area Mitigation	Runoff Rate	Runoff Volume	GRV	wqv	СРУ		Permit Fee	Procedure/W orksheets		Spreadsheet	Pollutants Loads Calculated
	CRWD				X			-			х			N/A
	CNT			Х	Х				х			Х		N/A
Х	City of Seattle		Х										Х	N/A
	Dane County, Wisconsin									Х	х			N/A
Х	Florida (DRAFT)	x									Х			TP, TN
Х	Georgia						х				Х			N/A
х	Kitsap County, Washington			Х			Х						х	N/A
	Knox County, Tennessee						Х				Х			N/A
Х	Maryland					Х	Х	Х			Х			N/A
х	Massachusetts	Х				х	Х				х		х	TSS
Х	Minnesota						Х	Х			Х			N/A
х	New Hampshire	Х											х	TSS, TP, TN
Х	New Jersey					Х							Х	N/A
х	Pennsylvania	Х			х						х			TSS, TP, TN
Х	Purdue University	Х			Х							Х		N, TP, TSS, Pb, Cu, Zn, Cd, Cr, Ni, BOD, COD, Oil & Grease, Fecal Coliform & Strep
	RWMWD				Х						х		х	N/A
Х	Rhode Island (DRAFT)	Х				Х	х	Х			х			TSS, TP, TN
	SEMCOG						Х				Х			N/A
Х	Stearns County, Minnesota	Х											Х	TSS, TP
	Town of Tolland, Connecticut					Х	Х	Х			Х			N/A
Х	Ventura County, California		Х	Х			Х				х			N/A
	VRJPO						Х				Х			N/A
	Vermont					Х	Х				Х			N/A
Х	Virginia	х		х			Х	х					X	TP, TN

Credit Methodology Summary

CN X Cit	ity of Seattle	Retention Depths for Goal Load Removal	Mean Annual Mass Removal Efficiencies per Retention Depth	Runoff Coefficient as a Function of DCIA	Average Annual		BMP	ded and Sourc	-				_			al Information
CN X Cit	NT ity of Seattle				Precipitation	EMC	Removal Efficiencies	BMP Curve Numbers	BMP Runoff Coefficient	BMP Sizing Factors/Area Credit	BMP Sizing Rainfall Targets	Runoff	Pervious Runoff Coefficient	Infiltration Rates	Calculation Submittal Required?	Fee In Lieu of Impact Possible?
X Cit	ity of Seattle											CRWD		MN SWM	Yes	Yes
								CNT	CNT						N/A	
Da										SEA					Yes	
	ane County, Wisconsin														Yes	
X Flc	lorida (DRAFT)	FDEP	FDEP	FDEP		FDEP										
X Ge	eorgia														No	
X Kit	itsap County, Washington									KSC					No	
Kn	nox County, Tennessee														No	
	laryland										MDE					
	lassachusetts														Yes	
X Mi	linnesota														No	
X Ne	ew Hampshire				NOAA	NH SWM	NH SWM								Yes	
X Ne	ew Jersey														No	
X Pe	ennsylvania					MULTIPLE	MULTIPLE									
X Pu	urdue University					TNRCC									N/A	
RV	WMWD											RWMWD		MN SWM	Yes	Yes
X Rh	hode Island (DRAFT)					MULTIPLE	MULTIPLE									
SE	EMCOG														No	
	tearns County, Minnesota														No	
	own of Tolland, Connecticut														Unknown	
	entura County, California											VC	VC		Yes	
VR	RJPO													MULTIPLE	Yes	
Ve	ermont														No	
X Vir	irginia						VA RRM					MULTIPLE	MULTIPLE		No	Recommended

			Documents		
Included in Memo	Entity	Tool Documentation	Pages	Interactive Tool	Comments
	CRWD	<u>Rules</u>	14-17	Spreadsheet	Worksheet calculations for infiltration basins, raingardens, and subsurface s calculations required for other BMPs.
	CNT	Methodology	All	Online Calculator	Residential/homeowner application
Х	City of Seattle	Manual	4-36 - 4-111	Spreadsheet	
	Dane County, Wisconsin				Permit fees based on disturbed and impervious area, thus incentive for min
Х	Florida (DRAFT)	<u>Handbook</u>	2 (Treatment Train), 6-20, 29- 145 (BMPs), 146-151 (LID), 172-203 (Examples)	N/A	Different performance standards for Outstanding Florida Waters (OFW), Im TDMLs (either 85% Load Reduction or Post=Pre); credit for BMP treatment to (pages 204-208); page 5-17 of the Research Report explains evaluation met simulation modeling used for volume
Х	Georgia	Manual	1.4-39 - 1.4-45	N/A	Chapter 3 has structural BMPs- page 3.1-7 BMP Removal Efficiencies, 3.1-30 are just guidance (not used in a calulation)
Х	Kitsap County, Washington	Guidance Document	All	<u>Spreadsheet</u>	Rate and volume control based on continuous simulation modeling- WWHN
	Knox County, Tennessee	Manual	All	N/A	
Х	Maryland	Manual	All	N/A	Revised chapter 5 in 2009
Х	Massachusetts	<u>Guidance Document</u>	All	<u>Spreadsheet</u>	TSS calculation spreadsheet available
Х	Minnesota	Manual	284-311	N/A	
х	New Hampshire	<u>Guidance</u>	All	<u>Spreadsheet</u>	
Х	New Jersey	Manual	All	Spreadsheet	
Х	Pennsylvania	<u>Manual</u>	All	N/A	Page 14-16 is process, BMP Removal Efficiencies in Appendix A
х	Purdue University	<u>Documentation</u>	N/A	Online Calculator	Screening level tool
	RWMWD	Rules	13-16	Spreadsheet	Worksheet calculations for infiltration basins, raingardens, and subsurface s calculations required for other BMPs.
Х	Rhode Island (DRAFT)	<u>Manual</u>	All	N/A	Page 1-7 - 1-12 is process, WQV- Chapter 4, GRV- Chapter 5, CPV- Chapter 5 and 7, Appendix H has pollutant loading analysis procedures (taken from M is treatment train
	SEMCOG	Manual	370-384	N/A	
Х	Stearns County, Minnesota	Methodology	All	Spreadsheet	Screening level tool
	Town of Tolland, Connecticut	<u>Manual</u>	33-38	N/A	
Х	Ventura County, California	<u>Manual</u>	2-11 - 2-12, 2-26 - 2-28		
	VRJPO	<u>Rules</u>	26-31	N/A	
	Vermont	Manual	3-1 - 3-16	N/A	
Х	Virginia	Instructions	All	<u>Spreadsheet</u>	

e storage only. Hand
inimization
mpaired, and Adopted t trains, addresses karst ethodology, contnuous
30 Treatment Trains- these
IM3
e storage only. Hand
5 and 7, rate- Chapter 5 Massachusetts)- page H-19

Abbreviations	
CNT	Center for Neighborhood Technology
CPV	Channel Protection Volume
CRWD	Capitol Region Watershed District
DCIA	Directly Connected Impervious Area
EMC	Event Mean Concentration
FDEP	Florida Department of Environmental Protection
GRV	Groundwater Recharge Volume
KSC	Kitsap County
MDE	Maryland Department of the Environment
MN SWM	Minnesota Stormwater Manual
MULTIPLE	Multiple Sources Referenced
NH SWM	New Hampshire Stormwater Manual
NOAA	National Oceanic and Atmospheric Administration
RWMWD	Ramsey-Washington Metro Watershed District
SEA	City of Seattle
SEMCOG	SE Michigan Council of Governments
TNRCC	Texas Natural Resource Conservation Commission
VA RRM	Virginia Runoff Reduction Method
VC	Ventura County
VRJPO	Vermillion River Joint Powers Organization
WQV	Water Quality Volume