m |
m (update link) |
||
(73 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | <noinclude>[[File:Technical information page image.png|100px|left|alt=image]]</noinclude> | ||
+ | |||
This section describes information on design of stormwater ponds. | This section describes information on design of stormwater ponds. | ||
The following terminology is used throughout this "Design Section": | The following terminology is used throughout this "Design Section": | ||
{{Alert|''Required'' - Indicates design standards stipulated by the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Construction General Permit] (CGP) or other consistently applicable regulations|alert-danger}} | {{Alert|''Required'' - Indicates design standards stipulated by the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Construction General Permit] (CGP) or other consistently applicable regulations|alert-danger}} | ||
− | + | ||
− | + | ''Highly recommended'' - Indicates design guidance that is extremely beneficial or necessary for proper functioning of the constructed pond, but not specifically required by the MPCA CGP. | |
+ | |||
+ | ''Recommended'' - Indicates design guidance that is helpful for constructed performance but not critical to the design. | ||
+ | |||
+ | ==Summary of permit requirements== | ||
+ | Permit requirements are included throughout this page. A summary of these requirements is provided below. | ||
+ | *Stormwater ponds must not be located in, nor drain water from, wetlands unless mitigated for | ||
+ | *Stormwater ponds must not be located within surface water bodies or any buffer zones required under [https://stormwater.pca.state.mn.us/index.php?title=MN_CSW_Permit_Section_23_Discharges_to_Special_(Prohibited,_Restricted,_Other)_and_Impaired_Waters#23.11 Section 23.11 of the CSW permit] | ||
+ | *The ''Required'' minimum permanent pool volume, or dead storage (V<sub>pp</sub> below the outlet elevation), is 1800 cubic feet of storage below the outlet pipe for each acre that drains to the pond | ||
+ | *The ''Required'' minimum water quality volume, or live storage (V<sub>wq</sub>), is 1.0 inch of runoff from the net increase in impervious surfaces created by the project. This should be calculated as an instantaneous volume | ||
+ | *The [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html CGP] requires that the V<sub>wq</sub> is discharged at no more than 5.66 cubic feet per second per acre of surface area of the pond. The surface area of the pond is calculated at the elevation that results from the V<sub>wq</sub> being dropped into the pond instantaneously | ||
+ | *Permanent pool depths must be a minimum of 3 feet and maximum of 10 feet at the deepest points | ||
+ | *Basin outlets must have energy dissipation | ||
+ | *Adequate maintenance access, typically with a minimum width of 8 feet, must be provided. Where a forebay is installed, direct vehicle/equipment access should be provided to the forebay for sediment removal and other maintenance activities. The maintenance access should extend to the forebay, access bench, riser, and outlet, and allow vehicles to turn around | ||
+ | *An emergency spillway must be provided to pass storms in excess of the pond hydraulic design. The spillway must be stabilized to prevent erosion and designed in accordance with applicable dam safety requirements ([https://www.nrcs.usda.gov/resources/guides-and-instructions/pond-no-378-conservation-practice-standard NRCS Pond Standard 378] and [http://www.dnr.state.mn.us/waters/surfacewater_section/damsafety/index.html Mn/DNR dam safety guidelines]). The emergency spillway must be located so that downstream structures will not be impacted by spillway discharges. If the spillway crosses the maintenance access, materials meeting the appropriate load requirements must be selected | ||
+ | *The riser must be located so that short-circuiting between inflow points and the riser does not occur | ||
+ | *Basin outlets must be designed to prevent discharge of floating debris | ||
+ | *Permittees must design basins using an impermeable liner if located within active [[Karst|karst]] terrain | ||
+ | *Inlet areas should be stabilized to ensure that non-erosive conditions exist during high-flow events | ||
+ | *All pond designs should incorporate an access bench | ||
+ | *(Minnesota Department of Health Rule 4725.4350) states that a minimum horizontal distance between a water-supply well and the ordinary high water level of a storm water retention pond is 35 feet | ||
+ | *Public safety must be considered in every aspect of pond design | ||
==Physical feasibility initial check== | ==Physical feasibility initial check== | ||
Before deciding to use a pond for stormwater management, it is helpful to consider several items that bear on the feasibility of using a pond at a given location. The following list of considerations will help in making an initial judgment as to whether or not a pond is the appropriate [[Glossary#B|BMP]] for the site. Note that none of these guidelines are strictly required by the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Construction Stormwater General Permit], and it may be possible to overcome site deficiencies with additional engineering or the use of other BMPs. | Before deciding to use a pond for stormwater management, it is helpful to consider several items that bear on the feasibility of using a pond at a given location. The following list of considerations will help in making an initial judgment as to whether or not a pond is the appropriate [[Glossary#B|BMP]] for the site. Note that none of these guidelines are strictly required by the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Construction Stormwater General Permit], and it may be possible to overcome site deficiencies with additional engineering or the use of other BMPs. | ||
− | *'''Drainage area''' – 10 acres minimum ''Recommended'', to ensure hydrologic input sufficient to maintain permanent pool; 10 acres (or less) may be acceptable, particularly if the [[Glossary#G|groundwater]] table is intercepted and a [[Glossary#W|water balance]] indicates that a permanent pool can be sustained. See [ | + | |
+ | {{alert|It is ''Required'' that stormwater ponds not be located in, nor drain water from, wetlands unless mitigated for|alert-danger}} | ||
+ | {{alert|It is ''Required'' that stormwater ponds not be located within surface water bodies or any buffer zones required under Section 23.11 of the CSW permit|alert-danger}} | ||
+ | {{alert|It is ''Required'' that the minimum horizontal distance between a water-supply well and the ordinary high water level of a storm water retention pond is 35 feet|alert-danger}} | ||
+ | {{alert|It is ''Required'' that CSW permittees must design basins using an impermeable liner if located within active karst terrain.|alert-danger}} | ||
+ | |||
+ | *'''Drainage area''' – 10 acres minimum ''Recommended'', to ensure hydrologic input sufficient to maintain permanent pool; 10 acres (or less) may be acceptable, particularly if the [[Glossary#G|groundwater]] table is intercepted and a [[Glossary#W|water balance]] indicates that a permanent pool can be sustained. See [https://chesapeakestormwater.net/design-specification-no-14-wet-pond/] | ||
*'''Space required''' – Approximately 1 to 3 percent of the tributary drainage area is ''Recommended'' for the pond footprint. | *'''Space required''' – Approximately 1 to 3 percent of the tributary drainage area is ''Recommended'' for the pond footprint. | ||
*'''Site topography and slope''' – It is ''Highly Recommended'' that slopes immediately adjacent to ponds be less than 25 percent but greater than 0.5 to 1 percent to promote flow towards the pond. | *'''Site topography and slope''' – It is ''Highly Recommended'' that slopes immediately adjacent to ponds be less than 25 percent but greater than 0.5 to 1 percent to promote flow towards the pond. | ||
*'''Minimum head''' – The elevation difference ''Recommended'' at a site from the inflow to the outflow is 6 to 10 feet, but lower heads will work at small sites. | *'''Minimum head''' – The elevation difference ''Recommended'' at a site from the inflow to the outflow is 6 to 10 feet, but lower heads will work at small sites. | ||
*'''Minimum depth to water table''' – In general, there is no minimum separation distance required with ponds. Intercepting the groundwater table can help sustain a permanent pool. However, some [[Glossary#S|source water protection]] requirements may dictate a separation distance or an impervious liner if there is a sensitive underlying [[Glossary#A|aquifer]] and the bottom material of the pond allows for [[Glossary#I|infiltration]]. | *'''Minimum depth to water table''' – In general, there is no minimum separation distance required with ponds. Intercepting the groundwater table can help sustain a permanent pool. However, some [[Glossary#S|source water protection]] requirements may dictate a separation distance or an impervious liner if there is a sensitive underlying [[Glossary#A|aquifer]] and the bottom material of the pond allows for [[Glossary#I|infiltration]]. | ||
− | *'''Soils''' – Underlying soils of [[Design | + | *'''Soils''' – Underlying soils of [[Design infiltration rates|hydrologic group C or D]] should be adequate to maintain a permanent pool. A liner may be needed for most group A soils and some group B soils, in order to maintain a permanent pool. A site specific geotechnical investigation should be performed. Also, if earthen embankments are to be constructed, it will be necessary to use suitable soils and to follow guidance in [https://www.nrcs.usda.gov/sites/default/files/2022-09/Pond_378_NHCP_CPS_2022.pdf NRCS Pond 378] or other guidelines from the [http://www.dnr.state.mn.us/waters/surfacewater_section/damsafety/index.html Dam Safety Section] of the Minnesota Department of Natural Resources. |
*'''Groundwater protection''' – It is ''Highly Recommended'' that ponds treating runoff from [[Potential stormwater hotspots|potential stormwater hotspots]] (PSHs) have excellent [[Pretreatment|pretreatment]] practices provided. In some cases (depending on the land use and associated activities), lining the pond may be necessary to protect groundwater, particularly when the seasonally high groundwater elevation is within three feet of the pond bottom. | *'''Groundwater protection''' – It is ''Highly Recommended'' that ponds treating runoff from [[Potential stormwater hotspots|potential stormwater hotspots]] (PSHs) have excellent [[Pretreatment|pretreatment]] practices provided. In some cases (depending on the land use and associated activities), lining the pond may be necessary to protect groundwater, particularly when the seasonally high groundwater elevation is within three feet of the pond bottom. | ||
*'''Separation distance''' - The minimum horizontal distance between a water-supply well and the ordinary high water level of a storm water retention pond is 35 feet ([https://www.revisor.mn.gov/rules/?id=4725.4350]). | *'''Separation distance''' - The minimum horizontal distance between a water-supply well and the ordinary high water level of a storm water retention pond is 35 feet ([https://www.revisor.mn.gov/rules/?id=4725.4350]). | ||
Line 19: | Line 48: | ||
*'''Cold water fisheries''' – Ponds may not be appropriate practices where receiving waters are sensitive cold water fisheries, due to the potential for stream warming from pond outflows. If ponds are used, it is ''Highly Recommended'' that the 1-year, 24-hour storm be detained for no longer than 12 hours. If regulatory provisions allow, a smaller permanent pool with more extended detention storage should be considered. | *'''Cold water fisheries''' – Ponds may not be appropriate practices where receiving waters are sensitive cold water fisheries, due to the potential for stream warming from pond outflows. If ponds are used, it is ''Highly Recommended'' that the 1-year, 24-hour storm be detained for no longer than 12 hours. If regulatory provisions allow, a smaller permanent pool with more extended detention storage should be considered. | ||
*'''Shallow soils and bedrock''' – For situations with [[Shallow soils and shallow depth to bedrock|shallow bedrock and ground water]], pond use is limited due to the available depth, affecting the surface area required as well as the aesthetics of the pond. Consider [[Stormwater wetlands|stormwater wetlands]] as an alternative. | *'''Shallow soils and bedrock''' – For situations with [[Shallow soils and shallow depth to bedrock|shallow bedrock and ground water]], pond use is limited due to the available depth, affecting the surface area required as well as the aesthetics of the pond. Consider [[Stormwater wetlands|stormwater wetlands]] as an alternative. | ||
− | |||
− | |||
− | |||
− | |||
==Conveyance== | ==Conveyance== | ||
Line 43: | Line 68: | ||
*It is ''Recommended'' that tree clearing be minimized along the downstream channel and that a forested [[Glossary#R|riparian]] zone be reestablished in the shortest possible distance. It is also ''recommended'' that excessive use of rip-rap be avoided, to minimize stream warming in channels with dry weather flow. | *It is ''Recommended'' that tree clearing be minimized along the downstream channel and that a forested [[Glossary#R|riparian]] zone be reestablished in the shortest possible distance. It is also ''recommended'' that excessive use of rip-rap be avoided, to minimize stream warming in channels with dry weather flow. | ||
*Local agencies (Watershed Districts, Watershed Management Organizations (WMOs), municipalities, etc.) may have additional outlet control requirements. | *Local agencies (Watershed Districts, Watershed Management Organizations (WMOs), municipalities, etc.) may have additional outlet control requirements. | ||
− | |||
− | |||
==Pretreatment== | ==Pretreatment== | ||
Construction of pretreatment measures immediately upstream of the main pond is ''Highly Recommended'', to reduce the maintenance requirements and increase the longevity of a stormwater treatment pond. A large portion of the overall sediment load (the heavier sediments) can be captured by relatively small (and therefore relatively easy to clean and maintain) BMPs. The larger pond area can thus be devoted to the settling of finer sediments, allowing it to fill more slowly and therefore requiring less frequent maintenance. | Construction of pretreatment measures immediately upstream of the main pond is ''Highly Recommended'', to reduce the maintenance requirements and increase the longevity of a stormwater treatment pond. A large portion of the overall sediment load (the heavier sediments) can be captured by relatively small (and therefore relatively easy to clean and maintain) BMPs. The larger pond area can thus be devoted to the settling of finer sediments, allowing it to fill more slowly and therefore requiring less frequent maintenance. | ||
− | It is therefore ''Highly Recommended'' that each pond have a sediment forebay or equivalent upstream pretreatment (non-pond BMPs may serve as | + | It is therefore ''Highly Recommended'' that each pond have a sediment forebay or equivalent upstream pretreatment (non-pond BMPs may serve as pretreatment) at each inflow point that contributes greater than 10 percent of the inflow volume. A sediment forebay is a small pool, separated from the permanent pool by barriers such as earthen berms, concrete weirs, or gabion baskets, where initial settling of heavier particulates can occur. |
{{alert|It is ''Required'' that where a forebay is installed, that direct vehicle/equipment access be provided to the forebay for sediment removal and other maintenance activities.|alert-danger}} | {{alert|It is ''Required'' that where a forebay is installed, that direct vehicle/equipment access be provided to the forebay for sediment removal and other maintenance activities.|alert-danger}} | ||
*It is ''Highly Recommended'' that flows from forebays enter the permanent pool area with non-erosive outlet conditions. | *It is ''Highly Recommended'' that flows from forebays enter the permanent pool area with non-erosive outlet conditions. | ||
Line 56: | Line 79: | ||
*It is ''Recommended'' that a fixed vertical sediment depth marker be installed in the forebay to measure sediment deposition over time. The marker should be sturdy and placed deep enough into the bottom of the forebay so that ice movement does not affect its position. | *It is ''Recommended'' that a fixed vertical sediment depth marker be installed in the forebay to measure sediment deposition over time. The marker should be sturdy and placed deep enough into the bottom of the forebay so that ice movement does not affect its position. | ||
*It is ''Recommended'' that the bottom of the forebay be hardened, using concrete, asphalt, or grouted riprap, to make sediment removal easier. | *It is ''Recommended'' that the bottom of the forebay be hardened, using concrete, asphalt, or grouted riprap, to make sediment removal easier. | ||
+ | |||
+ | {{alert|Pretreatment is an alternative to the preferred active management strategy of drawing down the permanent pool seasonally to provide detention while the permanent pool is frozen.|alert-info}} | ||
==Treatment== | ==Treatment== | ||
Line 118: | Line 143: | ||
===Non-clogging low flow orifice=== | ===Non-clogging low flow orifice=== | ||
It is ''Highly Recommended'' that the low flow orifice be adequately protected from clogging by either an acceptable external trash rack (recommended minimum orifice of 3 inches) or by internal orifice protection that may allow for smaller diameters (recommended minimum orifice of 1 inch). The ''Recommended'' method is a submerged reverse-slope pipe that extends downward from the riser to an inflow point at least one foot below the normal pool elevation (see [[Computer-aided design and drafting (CAD/CADD) drawings|CADD designs]]). This should also draw from at least 6 inches below the typical ice layer. To avoid release of deposited sediment, the pipe should not be installed on the pond floor. | It is ''Highly Recommended'' that the low flow orifice be adequately protected from clogging by either an acceptable external trash rack (recommended minimum orifice of 3 inches) or by internal orifice protection that may allow for smaller diameters (recommended minimum orifice of 1 inch). The ''Recommended'' method is a submerged reverse-slope pipe that extends downward from the riser to an inflow point at least one foot below the normal pool elevation (see [[Computer-aided design and drafting (CAD/CADD) drawings|CADD designs]]). This should also draw from at least 6 inches below the typical ice layer. To avoid release of deposited sediment, the pipe should not be installed on the pond floor. | ||
− | + | ||
+ | Alternative methods are to employ a broad crested rectangular, V-notch, or proportional weir, protected by a half-round CMP that extends at least 12 inches below the normal pool. It is ''Highly Recommended'' that the minimum weir slot width be 3 inches, especially when the slot is tall. It is ''Recommended'' that hoods over orifices be oversized to account for ice formation. | ||
===Trash racks=== | ===Trash racks=== | ||
Line 124: | Line 150: | ||
It is ''Highly Recommended'' that the principal spillway openings be equipped with removable trash racks to prevent clogging by large debris and to restrict access to the interior for safety purposes. US EPA guidance on control of floatables suggests that openings in the range of 1.5 inches are both cost-efficient and effective in removing floatables and large solids. | It is ''Highly Recommended'' that the principal spillway openings be equipped with removable trash racks to prevent clogging by large debris and to restrict access to the interior for safety purposes. US EPA guidance on control of floatables suggests that openings in the range of 1.5 inches are both cost-efficient and effective in removing floatables and large solids. | ||
− | + | ||
− | + | It is ''Recommended'' that trash racks be installed at a shallow (~15°) angle to prevent ice formation. | |
+ | |||
+ | Baffle weirs (essentially fences in the pond) can prevent ice reformation during the spring melt near the outlet by preventing surface ice from blocking the outlet structure. | ||
===Pond drain=== | ===Pond drain=== | ||
Line 132: | Line 160: | ||
===Adjustable gate valve=== | ===Adjustable gate valve=== | ||
It is ''Recommended'' that the pond drain and possibly the low flow orifice be equipped with an adjustable gate valve (typically a handwheel activated knife gate valve). These valves should be located inside the riser, where they (a) will not normally be inundated and (b) can be operated in a safe manner. To prevent vandalism that alters the pond level, the handwheel should be chained to a ringbolt, manhole step or other fixed object. | It is ''Recommended'' that the pond drain and possibly the low flow orifice be equipped with an adjustable gate valve (typically a handwheel activated knife gate valve). These valves should be located inside the riser, where they (a) will not normally be inundated and (b) can be operated in a safe manner. To prevent vandalism that alters the pond level, the handwheel should be chained to a ringbolt, manhole step or other fixed object. | ||
− | + | ||
+ | It is ''Recommended'' that both the low flow orifice pipe and the pond drain be sized one pipe size greater than the calculated design diameter and the gate valve be installed and adjusted to an equivalent orifice diameter. | ||
===Riser access=== | ===Riser access=== | ||
Line 139: | Line 168: | ||
===Emergency spillway=== | ===Emergency spillway=== | ||
{{alert|It is ''Required'' that an emergency spillway should be provided to pass storms in excess of the pond hydraulic design.|alert-danger}} | {{alert|It is ''Required'' that an emergency spillway should be provided to pass storms in excess of the pond hydraulic design.|alert-danger}} | ||
− | {{alert|It is also ''Required'' that the spillway be stabilized to prevent erosion and designed in accordance with applicable dam safety requirements ([ | + | {{alert|It is also ''Required'' that the spillway be stabilized to prevent erosion and designed in accordance with applicable dam safety requirements ([https://www.nrcs.usda.gov/resources/guides-and-instructions/pond-no-378-conservation-practice-standard NRCS Pond Standard 378] and [http://www.dnr.state.mn.us/waters/surfacewater_section/damsafety/index.html Mn/DNR dam safety guidelines]). The emergency spillway must be located so that downstream structures will not be impacted by spillway discharges. If the spillway crosses the maintenance access, materials meeting the appropriate load requirements must be selected.|alert-danger}} |
+ | |||
+ | ===Temperature control=== | ||
+ | {{alert|The use of wet ponds in watersheds containing trout streams is strongly discouraged, because the discharge can cause stream temperature warming.|alert-warning}} | ||
+ | |||
+ | The Permittee(s) must design the Permanent Stormwater Management System such that the discharge from the project will minimize any increase in the temperature of trout stream receiving waters resulting from the one (1)-and two (2)-year 24-hour precipitation events. This includes all tributaries of designated trout streams within the Public Land Survey System (PLSS) Section that the trout stream is located. Projects that discharge to trout streams must minimize the impact using one or more of the following measures, in order of preference: | ||
+ | |||
+ | a. Minimize new impervious surfaces.<br> | ||
+ | b. Minimize the discharge from connected impervious surfaces by discharging to vegetated areas, or grass swales, and through the use of other non-structural controls.<br> | ||
+ | c. Infiltration or other volume reduction practices evapotranspiration of to reduce runoff in excess of pre-project conditions (up to the two (2)-year 24-hour precipitation event).<br> | ||
+ | d. If ponding is used, the design must include an appropriate combination of measures such as shading, filtered bottom withdrawal, vegetated swale discharges or constructed wetland treatment cells that will limit temperature increases. The pond should be designed to draw down in 24 hours or less.<br> | ||
+ | e. Other methods that will minimize any increase in the temperature of the trout stream. | ||
+ | |||
+ | The following recommendations, from the [https://files.nc.gov/ncdeq/Energy%20Mineral%20and%20Land%20Resources/Stormwater/BMP%20Manual/C-3%20%20Wet%20Pond%2004-17-17.pdf North Carolina design Manual, C-3, Wet Ponds], pertain to reducing the warming of stormwater in a wet pond: | ||
+ | *Trees and shrubs can be planted to maximize pond shading, primarily along the south, east, and west sides of the basin to reduce temperature impacts. | ||
+ | *The outlet structure can be modified to withdraw from a deeper point in the permanent pool to reduce temperature impacts. | ||
==Landscaping== | ==Landscaping== | ||
Line 145: | Line 189: | ||
===Landscaping plan=== | ===Landscaping plan=== | ||
It is ''Highly Recommended'' that a landscaping plan for the stormwater pond and the surrounding area be prepared to indicate how aquatic and terrestrial areas will be stabilized, and established with vegetation (see [[Minnesota plant lists|vegetation]] for guidance on vegetation). Landscaping plans should also include maintenance schedules. It is ''Highly Recommended'' that the plan be prepared by a qualified professional. The following guidance suggests how landscaping can be incorporated into pond design. | It is ''Highly Recommended'' that a landscaping plan for the stormwater pond and the surrounding area be prepared to indicate how aquatic and terrestrial areas will be stabilized, and established with vegetation (see [[Minnesota plant lists|vegetation]] for guidance on vegetation). Landscaping plans should also include maintenance schedules. It is ''Highly Recommended'' that the plan be prepared by a qualified professional. The following guidance suggests how landscaping can be incorporated into pond design. | ||
− | + | ||
− | + | Woody vegetation should not be planted or allowed to grow within 15 feet of the toe of the embankment or 25 feet from the inlet and outlet structures. | |
− | + | ||
− | + | Wherever possible, wetland plants should be encouraged in a pond design, either along the aquatic bench (fringe wetlands), the access bench and side slopes (ED wetlands) or within shallow areas of the pool itself. | |
− | + | ||
− | + | The best elevations for establishing wetland plants, either through transplantation or volunteer colonization, are within six inches (plus or minus) of the normal pool. | |
+ | |||
+ | The soils of a pond buffer are often severely compacted during the construction process to ensure stability. The density of these compacted soils can be so great that it effectively prevents root penetration, and therefore, may lead to premature mortality or loss of vigor. Consequently, it is advisable to excavate large and deep holes around the proposed planting sites, and backfill these with uncompacted topsoil or other organic material. | ||
+ | |||
+ | As a rule of thumb, planting holes should be three times deeper and wider than the diameter of the rootball (of balled and burlap stock), and five times deeper and wider for container grown stock. This practice should enable the stock to develop unconfined root systems. | ||
+ | |||
+ | Species that require full shade, are susceptible to winterkill, or are prone to wind damage should be avoided. Extra mulching around the base of the tree or shrub is strongly recommended as a means of conserving moisture and suppressing weeds. | ||
===Pond buffers and setbacks=== | ===Pond buffers and setbacks=== | ||
Line 167: | Line 217: | ||
*Pond fencing is generally not encouraged because the fence limits access to emergency personnel. A preferred method is to grade the pond to eliminate steep drop-offs or other safety hazards. Designers should check local requirements since fencing is required by some municipalities. | *Pond fencing is generally not encouraged because the fence limits access to emergency personnel. A preferred method is to grade the pond to eliminate steep drop-offs or other safety hazards. Designers should check local requirements since fencing is required by some municipalities. | ||
*Dam safety regulations should be strictly followed with pond design to ensure that downstream property and structures are adequately protected. | *Dam safety regulations should be strictly followed with pond design to ensure that downstream property and structures are adequately protected. | ||
+ | |||
+ | ==Design considerations for ponds used for harvest and use== | ||
+ | {{:Design considerations for constructed stormwater ponds used for harvest and irrigation use/reuse}} | ||
==Design procedure== | ==Design procedure== | ||
The following steps outline a recommended design procedure for a wet extended detention pond (wet sedimentation basin) in compliance with the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA CGP] for new construction. Design recommendations beyond those specifically required by the permit are also included and marked accordingly. | The following steps outline a recommended design procedure for a wet extended detention pond (wet sedimentation basin) in compliance with the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA CGP] for new construction. Design recommendations beyond those specifically required by the permit are also included and marked accordingly. | ||
==='''Step 1.''' Make a preliminary judgment as to whether site conditions are appropriate=== | ==='''Step 1.''' Make a preliminary judgment as to whether site conditions are appropriate=== | ||
− | {{alert|For sites covered under the MPCA Construction Stormwater General Permit or under the MPCA Municipal Separate Storm Sewer System General Permit, the permittee must first consider implementing on-site volume control practices.|alert-danger}} | + | {{alert|For sites covered under the MPCA Construction Stormwater General Permit or under the MPCA Municipal Separate Storm Sewer System General Permit, the permittee must first consider implementing on-site [[Stormwater infiltration Best Management Practices|volume control practices]].|alert-danger}} |
− | Make a preliminary judgment as to whether site conditions are appropriate for the use of a stormwater pond, and identify the function of the pond in the overall treatment system. | + | A. Make a preliminary judgment as to whether site conditions are appropriate for the use of a stormwater pond, and identify the function of the pond in the overall treatment system. |
− | + | A. Consider basic issues for initial suitability screening, including: | |
*Site drainage area | *Site drainage area | ||
*Depth to water table | *Depth to water table | ||
Line 180: | Line 233: | ||
*Presence of wetlands | *Presence of wetlands | ||
*Soil characteristics | *Soil characteristics | ||
− | *Receiving water(s) | + | *Receiving water(s) |
− | + | ||
+ | B. Determine how the pond will fit into the overall stormwater treatment system. | ||
*Decide whether the pond is the only BMP to be employed, or if are there other BMPs (including other ponds) addressing some of the treatment requirements. | *Decide whether the pond is the only BMP to be employed, or if are there other BMPs (including other ponds) addressing some of the treatment requirements. | ||
*Determine whether the pond needs to treat water quality (V<sub>wq</sub>), quantity (V<sub>cp</sub>, Q<sub>p</sub>, Q<sub>f</sub>), or both (see [[Unified sizing criteria]]). | *Determine whether the pond needs to treat water quality (V<sub>wq</sub>), quantity (V<sub>cp</sub>, Q<sub>p</sub>, Q<sub>f</sub>), or both (see [[Unified sizing criteria]]). | ||
*Determine whether the pond is being designed as a wet sedimentation basin under the MPCA General Stormwater Permit for Construction Activities ([http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html CGP]). | *Determine whether the pond is being designed as a wet sedimentation basin under the MPCA General Stormwater Permit for Construction Activities ([http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html CGP]). | ||
− | + | *Decide where on the site the pond is most likely to be located. | |
− | *Decide where on the site the pond is most likely to be located. | ||
− | |||
− | |||
==='''Step 2.''' Confirm design criteria and applicability.=== | ==='''Step 2.''' Confirm design criteria and applicability.=== | ||
A. Determine whether the pond must comply with the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA CGP]. | A. Determine whether the pond must comply with the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA CGP]. | ||
− | + | ||
+ | B. Check with local officials, watershed organizations, and other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply. | ||
==='''Step 3.''' Confirm site suitability.=== | ==='''Step 3.''' Confirm site suitability.=== | ||
Line 199: | Line 251: | ||
*It is ''Recommended'' that the minimum depth of the soil borings or pits be five feet below the bottom elevation of the proposed pond. | *It is ''Recommended'' that the minimum depth of the soil borings or pits be five feet below the bottom elevation of the proposed pond. | ||
*It is ''Highly Recommended'' that the field verification be conducted by a qualified geotechnical professional. | *It is ''Highly Recommended'' that the field verification be conducted by a qualified geotechnical professional. | ||
− | |||
− | + | B. Perform water balance calculations, if needed. | |
==='''Step 4.''' Compute runoff control volumes and permanent pool volume.=== | ==='''Step 4.''' Compute runoff control volumes and permanent pool volume.=== | ||
− | Calculate the Permanent Pool Volume (V<sub>pp</sub>), Water Quality Volume (V<sub>wq</sub>) | + | Calculate the Permanent Pool Volume (V<sub>pp</sub>), Water Quality Volume (V<sub>wq</sub>) |
+ | <math>V_{pp} = 1800A</math> | ||
− | + | where | |
+ | :A = the drainage area of the stormwater pond (acres) | ||
or | or | ||
Line 214: | Line 267: | ||
<math>V_{pp} = 0.0417 A </math> | <math>V_{pp} = 0.0417 A </math> | ||
+ | where | ||
+ | :A = the drainage area of the stormwater pond (square feet) | ||
{{alert|If the pond is being designed as a wet detention pond for new construction under the MPCA CGP Permit, then a permanent pool volume equal to 1800 cubic feet for each acre draining to the pond is ''Required''.|alert-danger}} | {{alert|If the pond is being designed as a wet detention pond for new construction under the MPCA CGP Permit, then a permanent pool volume equal to 1800 cubic feet for each acre draining to the pond is ''Required''.|alert-danger}} | ||
In the case where the entire V<sub>wq</sub> is to be treated with other BMPs and the pond is being constructed only for rate control, a permanent pool may not be required, although it still may be desirable. | In the case where the entire V<sub>wq</sub> is to be treated with other BMPs and the pond is being constructed only for rate control, a permanent pool may not be required, although it still may be desirable. | ||
− | |||
{{alert|It is also ''Required'' that sediment deposited during construction be removed before normal operation begins (refer to [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Permit] for additional design requirements).|alert-danger}} | {{alert|It is also ''Required'' that sediment deposited during construction be removed before normal operation begins (refer to [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html MPCA Permit] for additional design requirements).|alert-danger}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | The water quality volume, V<sub>wq</sub>, in cubic feet is given by | |
− | <math>V_{wq} = | + | <math>V_{wq} = 1inch * IC * \frac{43,560 ft^2}{12 inches}</math> |
where | where | ||
:IC = new impervious area (acres) | :IC = new impervious area (acres) | ||
− | + | If part of the overall V<sub>wq</sub> is to be treated by other BMPs, subtract that portion from the V<sub>wq</sub> to determine the part of the V<sub>wq</sub> to be treated by the pond. It is assumed that the pond will be the only BMP used for rate control for larger storms. If this is the case, the pond should be designed to treat the entirety of these runoff control volumes. | |
− | |||
==='''Step 5.''' Determine location and preliminary geometry.=== | ==='''Step 5.''' Determine location and preliminary geometry.=== | ||
The preliminary grading plan can be developed with the following procedure: | The preliminary grading plan can be developed with the following procedure: | ||
#Locate the pond in the lowest elevation area of the site (not in a jurisdictional wetland) and provide space around the pond for maintenance access (10 foot minimum width is ''Recommended''). | #Locate the pond in the lowest elevation area of the site (not in a jurisdictional wetland) and provide space around the pond for maintenance access (10 foot minimum width is ''Recommended''). | ||
− | #Establish a primary outlet elevation (normal water level) and | + | #Establish a primary outlet elevation (normal water level) and a pond bottom elevation. |
#Provide storage for the permanent pool below the primary outlet elevation in the main pond area. | #Provide storage for the permanent pool below the primary outlet elevation in the main pond area. | ||
#Include an aquatic bench extending into the permanent pool and an access bench extending out from the permanent pool. | #Include an aquatic bench extending into the permanent pool and an access bench extending out from the permanent pool. | ||
− | #Considering the desired pond footprint during the V<sub>wq | + | #Considering the desired pond footprint during the V<sub>wq</sub> design storms, allocate storage volume above the primary outlet elevation for V<sub>wq</sub>. While developing the grading plan, consider the desired (or required) length to width ratio and side slopes detailed earlier in this section (or in applicable regulations). |
#Once the preliminary grading plan has been developed, determine the associated stage-storage relationship for water surface elevations through the maximum expected levels. | #Once the preliminary grading plan has been developed, determine the associated stage-storage relationship for water surface elevations through the maximum expected levels. | ||
Line 249: | Line 296: | ||
The approximate storage corresponding to a given stage (elevation) can be determined using the average end area method. The area within each of the closed contour lines on the grading plan representing the pond is measured, and the average area of each set of adjacent contours is computed. The approximate volume between the two contours is then calculated as the average area multiplied by the elevation difference. | The approximate storage corresponding to a given stage (elevation) can be determined using the average end area method. The area within each of the closed contour lines on the grading plan representing the pond is measured, and the average area of each set of adjacent contours is computed. The approximate volume between the two contours is then calculated as the average area multiplied by the elevation difference. | ||
− | |||
<math>V_{1-2} = ((A_1 + A_2)/2) (E_2 - E_1)</math> | <math>V_{1-2} = ((A_1 + A_2)/2) (E_2 - E_1)</math> | ||
Line 257: | Line 303: | ||
:A<sub>1</sub> and A<sub>2</sub> = the areas within closed contours 1 and 2, respectively; and | :A<sub>1</sub> and A<sub>2</sub> = the areas within closed contours 1 and 2, respectively; and | ||
:E<sub>2</sub> and E<sub>1</sub> = the elevations of contours 1 and 2, respectively. | :E<sub>2</sub> and E<sub>1</sub> = the elevations of contours 1 and 2, respectively. | ||
− | |||
Cumulative volume above the bottom of the pond, or above the normal water surface elevation, can be calculated by adding subsequent incremental volumes. This is readily accomplished with the use of a spreadsheet prepared as follows in the table below (the first row of the table below contains the spreadsheet column header, the second row is column description, and the third, fourth, and fifth rows provide an example, with a permanent pool elevation of 902). | Cumulative volume above the bottom of the pond, or above the normal water surface elevation, can be calculated by adding subsequent incremental volumes. This is readily accomplished with the use of a spreadsheet prepared as follows in the table below (the first row of the table below contains the spreadsheet column header, the second row is column description, and the third, fourth, and fifth rows provide an example, with a permanent pool elevation of 902). | ||
− | |||
The table below is an example spreadsheet - cumulative volume above normal surface elevation. | The table below is an example spreadsheet - cumulative volume above normal surface elevation. | ||
{{:Example spreadsheet - Cumulative volume above normal surface elevation}} | {{:Example spreadsheet - Cumulative volume above normal surface elevation}} | ||
− | |||
The stage-storage relationship will be used to develop a stage-storage-discharge table as outlet structures are designed. This is an iterative process that may include revising the preliminary grading plan and subsequently redetermining the stage-storage relationship (or using an acceptable model to check). | The stage-storage relationship will be used to develop a stage-storage-discharge table as outlet structures are designed. This is an iterative process that may include revising the preliminary grading plan and subsequently redetermining the stage-storage relationship (or using an acceptable model to check). | ||
Line 286: | Line 329: | ||
:S<sub>nw</sub> = Typical snowpack water at time of melt | :S<sub>nw</sub> = Typical snowpack water at time of melt | ||
:I<sub>vol</sub> = Estimated infiltration volume likely to occur during a 10-day melt period. | :I<sub>vol</sub> = Estimated infiltration volume likely to occur during a 10-day melt period. | ||
− | |||
[[Overview of basic stormwater concepts#Snowmelt|A series of maps]] that will allow the designer to determine the average depth of snowpack existing at the start of spring snowmelt, the water content of the snowpack during the month of March, and the expected infiltration. | [[Overview of basic stormwater concepts#Snowmelt|A series of maps]] that will allow the designer to determine the average depth of snowpack existing at the start of spring snowmelt, the water content of the snowpack during the month of March, and the expected infiltration. | ||
==='''Step 8.''' Size and design outlet structures=== | ==='''Step 8.''' Size and design outlet structures=== | ||
+ | {{alert|It is ''Required'' in the [http://www.pca.state.mn.us/index.php/water/water-types-and-programs/stormwater/construction-stormwater/index.html CGP] that the V<sub>wq</sub> is discharged at no more than 5.66 cubic feet per second per surface area of the pond.|alert-danger}} | ||
The following outlet stages should be included in the pond design. It is possible to design one device to meet all stages. Equations included in this step are based on certain assumptions about which types of outlet structures will be used to control the various stages. If the designer chooses to use different structure types, the specific equations used to determine stage-discharge relationships will change, but the general approach will remain the same. | The following outlet stages should be included in the pond design. It is possible to design one device to meet all stages. Equations included in this step are based on certain assumptions about which types of outlet structures will be used to control the various stages. If the designer chooses to use different structure types, the specific equations used to determine stage-discharge relationships will change, but the general approach will remain the same. | ||
Line 303: | Line 346: | ||
where: | where: | ||
:t<sub>wq</sub> = the intended V<sub>wq</sub> detention time. | :t<sub>wq</sub> = the intended V<sub>wq</sub> detention time. | ||
− | |||
From the stage-storage table, find the elevation associated with V<sub>wq</sub>. Calculate the approximate average head on the water quality outlet as | From the stage-storage table, find the elevation associated with V<sub>wq</sub>. Calculate the approximate average head on the water quality outlet as | ||
Line 314: | Line 356: | ||
The required orifice cross sectional area can then be indirectly computed using the orifice equation | The required orifice cross sectional area can then be indirectly computed using the orifice equation | ||
− | |||
<math>Q_{wq_avg} = CA_{wq} \sqrt{2gh _{wq avg}}</math> | <math>Q_{wq_avg} = CA_{wq} \sqrt{2gh _{wq avg}}</math> | ||
Line 323: | Line 364: | ||
:g = gravitational acceleration. | :g = gravitational acceleration. | ||
− | The diameter of the orifice is then | + | The diameter of the orifice is then |
− | <math>d_{wq} = 2 \sqrt{ | + | <math>d_{wq} = 2 \sqrt{A_{wq} / \pi}</math> |
The rate of discharge from the orifice for any head value hwq on the orifice can then be computed as | The rate of discharge from the orifice for any head value hwq on the orifice can then be computed as | ||
− | <math>Q_{wq} = CA_{wq} \sqrt{ | + | <math>Q_{wq} = CA_{wq} \sqrt{2gh_{wq}}</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Use this equation to check that your discharge rate meets the CGP. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Using the determined size information, incorporate the outlet structures into the pond design. Be aware of concerns associated with frozen conditions, particularly the risk of clogging or blockage of outlet structures with ice and the importance of burying pipes below the frost line. | Using the determined size information, incorporate the outlet structures into the pond design. Be aware of concerns associated with frozen conditions, particularly the risk of clogging or blockage of outlet structures with ice and the importance of burying pipes below the frost line. | ||
Line 371: | Line 379: | ||
==='''Step 9.''' Design spillway and embankments=== | ==='''Step 9.''' Design spillway and embankments=== | ||
− | The [ | + | The [https://www.nrcs.usda.gov/resources/guides-and-instructions/pond-no-378-conservation-practice-standard NRCS] has compiled additional design guidance and requirements for spillways and embankments (NRCS Pond 378 Conservation Practice Standard for Minnesota. The following items are some of the key guidelines to adhere to in the design of spillways and embankments. |
*It is ''Required'' that the emergency overflow be stabilized. | *It is ''Required'' that the emergency overflow be stabilized. | ||
*It is ''Required'' that embankments be overfilled by at least 5 percent to account for settling. | *It is ''Required'' that embankments be overfilled by at least 5 percent to account for settling. | ||
Line 379: | Line 387: | ||
==='''Step 10.''' Design inlets=== | ==='''Step 10.''' Design inlets=== | ||
+ | To prevent freezing and blockage of inflow, it is ''Highly Recommended'' that inlet pipes not be fully submerged and that they be buried below the frost line. [https://www.dot.state.mn.us/loadlimits/frost-thaw.html The Minnesota Department of Transportation] has developed frost and thaw depths for several Minnesota sites. | ||
− | + | It is also ''Highly Recommended'' to design the inlet to reduce or prevent scour, by including riprap or flow diffusion devices such as plunge pools or berms. | |
− | |||
==='''Step 11.''' Design sediment forebay=== | ==='''Step 11.''' Design sediment forebay=== | ||
The size of the sediment forebay was determined in Step 6. It is ''Recommended'' that a sediment marker be included in the forebay to indicate the need for sediment removal in the future. A hard bottom surface in the forebay is also ''Recommended'' in order to make sediment removal easier. | The size of the sediment forebay was determined in Step 6. It is ''Recommended'' that a sediment marker be included in the forebay to indicate the need for sediment removal in the future. A hard bottom surface in the forebay is also ''Recommended'' in order to make sediment removal easier. | ||
− | + | ||
+ | As discussed in Step 6, a weir structure added to the forebay will ensure that some pretreatment storage is available, even when the normal forebay is frozen. | ||
==='''Step 12.''' Design maintenance access and safety features=== | ==='''Step 12.''' Design maintenance access and safety features=== | ||
− | {{alert| | + | {{alert|Adequate maintenance access (typically 8 feet) is ''Required''.|alert-danger}} |
− | + | The access routes should be designed with a minimum 8 feet width and maximum 15 percent slope. | |
− | + | ||
+ | Safety features such as obstructive planting that make access difficult, signs warning against fishing and swimming, fencing, and grates over outlet structures should be included as appropriate. Aesthetic enhancements such as trails or benches can also be included. | ||
{{alert|If an outlet structure is greater than five feet deep, it is '''Required''' that OSHA health and safety guidelines be followed for safe construction and access practices.|alert-danger}} | {{alert|If an outlet structure is greater than five feet deep, it is '''Required''' that OSHA health and safety guidelines be followed for safe construction and access practices.|alert-danger}} | ||
Line 400: | Line 410: | ||
==='''Step 13.''' Check expected pond performance against regulatory requirements.=== | ==='''Step 13.''' Check expected pond performance against regulatory requirements.=== | ||
− | + | Check that the V<sub>wq</sub> release rate does not exceed 5.66 cubic feet per second per acre (cfs/acre) of pond area. | |
− | + | ||
− | + | Check that the V<sub>pp</sub> is at least 1800 cubic feet per acre that drains to the pond. | |
− | + | ||
+ | Check that the permanent pool is between 3 feet and 10 feet deep. | ||
+ | |||
+ | Check that V<sub>wq</sub> is equal to at least 1.0 inch of runoff from the net increase in impervious surfaces created by the project. | ||
+ | |||
+ | Determine applicable requirements for Q<sub>p10</sub> and Q<sub>p100</sub> release rates (e.g., pre-development rates), and check pond release rates (and freeboard) for the appropriate design events. | ||
==='''Step 14.''' Prepare vegetation and landscaping plan.=== | ==='''Step 14.''' Prepare vegetation and landscaping plan.=== | ||
− | |||
A landscaping and planting plan by a qualified professional for the pond and surrounding area should be prepared, utilizing native vegetation wherever possible. | A landscaping and planting plan by a qualified professional for the pond and surrounding area should be prepared, utilizing native vegetation wherever possible. | ||
==='''Step 15.''' Prepare operation and maintenance plan.=== | ==='''Step 15.''' Prepare operation and maintenance plan.=== | ||
− | + | Preparation of a plan for operation and maintenance of the pond and associated structures and landscaping is ''Highly Recommended''. See the Operation and Maintenance section for further details. | |
− | Preparation of a plan for operation and maintenance of the pond and associated structures and landscaping is '' | ||
==='''Step 16.''' Prepare cost estimate.=== | ==='''Step 16.''' Prepare cost estimate.=== | ||
− | |||
Refer to the Cost Considerations section for information on preparing a cost estimate for stormwater ponds. | Refer to the Cost Considerations section for information on preparing a cost estimate for stormwater ponds. | ||
See [[Computer-aided design and drafting (CAD/CADD) drawings|CADD designs]] for design details for pond systems. The following details, with specifications, have been created for stormwater ponds: | See [[Computer-aided design and drafting (CAD/CADD) drawings|CADD designs]] for design details for pond systems. The following details, with specifications, have been created for stormwater ponds: | ||
− | * | + | *Detention pond plan and profile: [[File:PONDS DETENTION SHALLOW PLAN & PROFILE (1).pdf]] |
− | * | + | *Pond outlet details: [[File:PONDS OUTLET DETAILS (1).pdf]] |
− | *Pond | + | *Pond plan and profile: [[File:PONDS POND PLAN & PROFILE (1).pdf]] |
− | * | + | *Shallow wetland plan and profile: [[File:PONDS SHALLOW WETLAND PLAN & PROFILE (1).pdf]] |
<noinclude> | <noinclude> | ||
Line 429: | Line 441: | ||
*[[Types of stormwater ponds]] | *[[Types of stormwater ponds]] | ||
*[[Design criteria for stormwater ponds]] | *[[Design criteria for stormwater ponds]] | ||
+ | *[[Design considerations for constructed stormwater ponds used for harvest and irrigation use/reuse]] | ||
*[[Construction specifications for stormwater ponds]] | *[[Construction specifications for stormwater ponds]] | ||
+ | <!--[[Construction observations for stormwater ponds]]--> | ||
*[[Assessing the performance of stormwater ponds]] | *[[Assessing the performance of stormwater ponds]] | ||
*[[Operation and maintenance of stormwater ponds]] | *[[Operation and maintenance of stormwater ponds]] | ||
*[[Cost-benefit considerations for stormwater ponds]] | *[[Cost-benefit considerations for stormwater ponds]] | ||
*[[Calculating credits for stormwater ponds]] | *[[Calculating credits for stormwater ponds]] | ||
+ | *[[Stormwater wet pond fact sheet]] | ||
+ | <!--[[Additional considerations for stormwater ponds]] | ||
+ | *[[Links for stormwater ponds]] | ||
+ | *[[External resources for stormwater ponds]]--> | ||
*[[References for stormwater ponds]] | *[[References for stormwater ponds]] | ||
+ | <!--*[[Supporting material for stormwater ponds]]--> | ||
*[[Requirements, recommendations and information for using stormwater pond as a BMP in the MIDS calculator]] | *[[Requirements, recommendations and information for using stormwater pond as a BMP in the MIDS calculator]] | ||
− | [[ | + | [[Category:Level 3 - Best management practices/Specifications and details/Design criteria]] |
</noinclude> | </noinclude> |
This section describes information on design of stormwater ponds.
The following terminology is used throughout this "Design Section":
Highly recommended - Indicates design guidance that is extremely beneficial or necessary for proper functioning of the constructed pond, but not specifically required by the MPCA CGP.
Recommended - Indicates design guidance that is helpful for constructed performance but not critical to the design.
Permit requirements are included throughout this page. A summary of these requirements is provided below.
Before deciding to use a pond for stormwater management, it is helpful to consider several items that bear on the feasibility of using a pond at a given location. The following list of considerations will help in making an initial judgment as to whether or not a pond is the appropriate BMP for the site. Note that none of these guidelines are strictly required by the MPCA Construction Stormwater General Permit, and it may be possible to overcome site deficiencies with additional engineering or the use of other BMPs.
Pond outfalls should be designed to not increase erosion or have undue influence on the downstream geomorphology of the stream.
Construction of pretreatment measures immediately upstream of the main pond is Highly Recommended, to reduce the maintenance requirements and increase the longevity of a stormwater treatment pond. A large portion of the overall sediment load (the heavier sediments) can be captured by relatively small (and therefore relatively easy to clean and maintain) BMPs. The larger pond area can thus be devoted to the settling of finer sediments, allowing it to fill more slowly and therefore requiring less frequent maintenance.
It is therefore Highly Recommended that each pond have a sediment forebay or equivalent upstream pretreatment (non-pond BMPs may serve as pretreatment) at each inflow point that contributes greater than 10 percent of the inflow volume. A sediment forebay is a small pool, separated from the permanent pool by barriers such as earthen berms, concrete weirs, or gabion baskets, where initial settling of heavier particulates can occur.
It is Highly Recommended that pond liners be considered in circumstances where a permanent pool is needed but difficult to maintain due to site conditions, or where seepage from the pond into the groundwater would otherwise occur but must be avoided. This includes:
If geotechnical tests confirm the need for a liner, see the section on liner specifications.
The site layout and pond grading affect the pollutant removal capability of the pond as well as the ease of maintenance. Performance is enhanced when multiple treatment pathways are provided by using multiple cells, longer flowpaths, high surface area to volume ratios, complex microtopography, and/or redundant treatment methods (combinations of pool, extended detention, and marsh). It is Recommended that a berm or simple weir be used instead of pipes to separate multiple ponds, because of the higher freezing potential of pipes. Specific guidelines are provided below:
All pond designs should incorporate an access bench (a shallow slope area adjacent to the pond, providing equipment access and preventing people from slipping into the water) and a submerged aquatic bench (a shallow slope area just inside the pond perimeter, facilitating the growth of aquatic plants). This is a Highly Recommended design practice that may be required by local authorities. Mosquito breeding concerns exist along bench areas. Therefore, it is Highly Recommended that designers follow recommendations from the Metropolitan Mosquito Control District.
If feasible, it is Recommended that the access be 10 feet wide, have a maximum slope of 0.15:1 (V:H) or 15 percent, and be appropriately stabilized for use by maintenance equipment and vehicles. Steeper grades may be allowable if designed using appropriate materials for the grade.
It is Recommended that the riser be located within the embankment for maintenance access, prevention of ice damage, and aesthetics.
The principle spillway (riser) should be designed for the desired release rates while keeping the future maintenance needs in mind. Lessening the potential for clogging and freezing, creating safe access paths for inspection and maintenance, barring access to children and vandals, and allowing safe draw down of the permanent pool, when necessary, are goals of riser design that consider long-term maintenance needs.
It is Highly Recommended that the low flow orifice be adequately protected from clogging by either an acceptable external trash rack (recommended minimum orifice of 3 inches) or by internal orifice protection that may allow for smaller diameters (recommended minimum orifice of 1 inch). The Recommended method is a submerged reverse-slope pipe that extends downward from the riser to an inflow point at least one foot below the normal pool elevation (see CADD designs). This should also draw from at least 6 inches below the typical ice layer. To avoid release of deposited sediment, the pipe should not be installed on the pond floor.
Alternative methods are to employ a broad crested rectangular, V-notch, or proportional weir, protected by a half-round CMP that extends at least 12 inches below the normal pool. It is Highly Recommended that the minimum weir slot width be 3 inches, especially when the slot is tall. It is Recommended that hoods over orifices be oversized to account for ice formation.
It is Highly Recommended that the principal spillway openings be equipped with removable trash racks to prevent clogging by large debris and to restrict access to the interior for safety purposes. US EPA guidance on control of floatables suggests that openings in the range of 1.5 inches are both cost-efficient and effective in removing floatables and large solids.
It is Recommended that trash racks be installed at a shallow (~15°) angle to prevent ice formation.
Baffle weirs (essentially fences in the pond) can prevent ice reformation during the spring melt near the outlet by preventing surface ice from blocking the outlet structure.
It is Highly Recommended that each pond be equipped with a drain that can dewater the pond to the maximum extent possible within 24 hours. The drain pipe should have an elbow or protected intake extending at least 1 inches above the bottom of the permanent pool to prevent deposited sediment from clogging the pipe or being re-released while the pond is being drained.
It is Recommended that the pond drain and possibly the low flow orifice be equipped with an adjustable gate valve (typically a handwheel activated knife gate valve). These valves should be located inside the riser, where they (a) will not normally be inundated and (b) can be operated in a safe manner. To prevent vandalism that alters the pond level, the handwheel should be chained to a ringbolt, manhole step or other fixed object.
It is Recommended that both the low flow orifice pipe and the pond drain be sized one pipe size greater than the calculated design diameter and the gate valve be installed and adjusted to an equivalent orifice diameter.
It is Recommended that lockable manhole covers and manhole steps within easy reach of valves and other controls be installed, to allow for maintenance access and prevent vandalism.
The Permittee(s) must design the Permanent Stormwater Management System such that the discharge from the project will minimize any increase in the temperature of trout stream receiving waters resulting from the one (1)-and two (2)-year 24-hour precipitation events. This includes all tributaries of designated trout streams within the Public Land Survey System (PLSS) Section that the trout stream is located. Projects that discharge to trout streams must minimize the impact using one or more of the following measures, in order of preference:
a. Minimize new impervious surfaces.
b. Minimize the discharge from connected impervious surfaces by discharging to vegetated areas, or grass swales, and through the use of other non-structural controls.
c. Infiltration or other volume reduction practices evapotranspiration of to reduce runoff in excess of pre-project conditions (up to the two (2)-year 24-hour precipitation event).
d. If ponding is used, the design must include an appropriate combination of measures such as shading, filtered bottom withdrawal, vegetated swale discharges or constructed wetland treatment cells that will limit temperature increases. The pond should be designed to draw down in 24 hours or less.
e. Other methods that will minimize any increase in the temperature of the trout stream.
The following recommendations, from the North Carolina design Manual, C-3, Wet Ponds, pertain to reducing the warming of stormwater in a wet pond:
It is Highly Recommended that a landscaping plan for the stormwater pond and the surrounding area be prepared to indicate how aquatic and terrestrial areas will be stabilized, and established with vegetation (see vegetation for guidance on vegetation). Landscaping plans should also include maintenance schedules. It is Highly Recommended that the plan be prepared by a qualified professional. The following guidance suggests how landscaping can be incorporated into pond design.
Woody vegetation should not be planted or allowed to grow within 15 feet of the toe of the embankment or 25 feet from the inlet and outlet structures.
Wherever possible, wetland plants should be encouraged in a pond design, either along the aquatic bench (fringe wetlands), the access bench and side slopes (ED wetlands) or within shallow areas of the pool itself.
The best elevations for establishing wetland plants, either through transplantation or volunteer colonization, are within six inches (plus or minus) of the normal pool.
The soils of a pond buffer are often severely compacted during the construction process to ensure stability. The density of these compacted soils can be so great that it effectively prevents root penetration, and therefore, may lead to premature mortality or loss of vigor. Consequently, it is advisable to excavate large and deep holes around the proposed planting sites, and backfill these with uncompacted topsoil or other organic material.
As a rule of thumb, planting holes should be three times deeper and wider than the diameter of the rootball (of balled and burlap stock), and five times deeper and wider for container grown stock. This practice should enable the stock to develop unconfined root systems.
Species that require full shade, are susceptible to winterkill, or are prone to wind damage should be avoided. Extra mulching around the base of the tree or shrub is strongly recommended as a means of conserving moisture and suppressing weeds.
It is Highly Recommended that a pond buffer extending 25 feet outward from the maximum water surface elevation of the pond be provided. Permanent structures (e.g., buildings) should not be constructed within the buffer. This distance may be greater under local regulations.
The pond buffer should be contiguous with other buffer areas that are required by existing regulations (e.g., stream buffers).
It is Highly Recommended that existing trees should be preserved in the buffer area during construction. It is desirable to locate forest conservation areas adjacent to ponds. To help discourage resident geese populations, the buffer can be planted with trees, shrubs and native ground covers.
Stormwater ponds can be used as the storage component of a stormwater harvest and use system. These ponds are multi-purpose, providing stormwater retention, sedimentation, and storage for later use. In this way, stormwater harvest and use systems can be part of a treatment train approach for stormwater management. Existing ponds can be retrofitted to serve as a water source for a harvest and use system.
The first question to ask before selecting a constructed stormwater pond as the BMP is whether a pond is the most appropriate BMP. If the goal is to meet a volume retention requirement and the retention requirement can be met through infiltration of stormwater, then stormwater infiltration practices should be considered. On soils conducive to infiltration and where site constraints do not exist, infiltration will typically be the most appropriate BMP. However, if site goals include other factors, such as replacing a water supply or irrigation of vegetation, harvest and use is an appropriate BMP.
Ponds should be designed following guidance in pond design guidance section of this manual. However, there are or may be specific design considerations for stormwater ponds used in harvest and use/reuse systems. These design considerations are summarized below.
Below is a list of additional considerations that are not specifically addressed above.
Maximum Detention Time - Average Daily Temperature
Link to this table
Maximum Detention Time (days) to limit algae blooms: | Average Daily Temperature (F) |
---|---|
50 | 59 |
30 | 68 |
20 | 77 |
The following steps outline a recommended design procedure for a wet extended detention pond (wet sedimentation basin) in compliance with the MPCA CGP for new construction. Design recommendations beyond those specifically required by the permit are also included and marked accordingly.
A. Make a preliminary judgment as to whether site conditions are appropriate for the use of a stormwater pond, and identify the function of the pond in the overall treatment system. A. Consider basic issues for initial suitability screening, including:
B. Determine how the pond will fit into the overall stormwater treatment system.
A. Determine whether the pond must comply with the MPCA CGP.
B. Check with local officials, watershed organizations, and other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.
A. Perform field verification of site suitability.
B. Perform water balance calculations, if needed.
Calculate the Permanent Pool Volume (Vpp), Water Quality Volume (Vwq)
\(V_{pp} = 1800A\)
where
or
\(V_{pp} = 0.0417 A \)
where
In the case where the entire Vwq is to be treated with other BMPs and the pond is being constructed only for rate control, a permanent pool may not be required, although it still may be desirable.
The water quality volume, Vwq, in cubic feet is given by
\(V_{wq} = 1inch * IC * \frac{43,560 ft^2}{12 inches}\)
where
If part of the overall Vwq is to be treated by other BMPs, subtract that portion from the Vwq to determine the part of the Vwq to be treated by the pond. It is assumed that the pond will be the only BMP used for rate control for larger storms. If this is the case, the pond should be designed to treat the entirety of these runoff control volumes.
The preliminary grading plan can be developed with the following procedure:
The approximate storage corresponding to a given stage (elevation) can be determined using the average end area method. The area within each of the closed contour lines on the grading plan representing the pond is measured, and the average area of each set of adjacent contours is computed. The approximate volume between the two contours is then calculated as the average area multiplied by the elevation difference.
\(V_{1-2} = ((A_1 + A_2)/2) (E_2 - E_1)\)
where:
Cumulative volume above the bottom of the pond, or above the normal water surface elevation, can be calculated by adding subsequent incremental volumes. This is readily accomplished with the use of a spreadsheet prepared as follows in the table below (the first row of the table below contains the spreadsheet column header, the second row is column description, and the third, fourth, and fifth rows provide an example, with a permanent pool elevation of 902).
The table below is an example spreadsheet - cumulative volume above normal surface elevation.
This table shows an example spreadsheet - Cumulative volume above normal surface elevation.
Link to this table
Spreadsheet Column Header | Elevation | Area | Average Area | Depth | Volume | Cumulative Volume | Volume Above Permanent Pool |
---|---|---|---|---|---|---|---|
Spreadsheet Column Description | Elevation of Pond Contour Line | Area enclosed by Contour Line | Average area of current and previous rows | Elevation difference between current and previous rows | Volume between current and previous contour | Volume between current and lowest contour | Volume between current and permanent pool contour |
Example value | 900 | 1000 | N/A | N/A | N/A | 0 | N/A |
Example value | 902 | 1200 | 1100 | 2 | 2200 | 2200 | 0 |
Example value | 904 | 1600 | 1400 | 2 | 2800 | 5000 | 2800 |
The stage-storage relationship will be used to develop a stage-storage-discharge table as outlet structures are designed. This is an iterative process that may include revising the preliminary grading plan and subsequently redetermining the stage-storage relationship (or using an acceptable model to check).
In the absence of adequate upstream treatment by other BMPs, it is Highly Recommended that a sediment forebay or similarly effective pretreatment system be provided at each inlet providing 10 percent or more of the total design inflow, with a Recommended volume equal to 10 percent of the permanent pool volume in a pool 4 to 6 feet deep (at shallower depths, the risk of sediment resuspension in the pretreatment area increases). The forebay storage volume counts toward the total permanent pool requirement. The storage volumes from other BMPs used upstream in the treatment train count toward the water quality volume (Vwq) requirement and thus may be subtracted from it.
When the pond and sediment forebay are frozen, much of the storage is rendered ineffective because stormwater runoff can flow over the ice and bypass the intended treatment. To alleviate this problem, additional extended detention storage (which is available even under frozen conditions) can be designed into the pond by increasing the extended detention storage volume designated for water quality control, or by adding a weir structure to the sediment forebay overflow area.
The average snowmelt volume can be computed from the following equation
\(A_{sv} = (A_{sd} S_{nw}) - I_{vol}\)
where:
A series of maps that will allow the designer to determine the average depth of snowpack existing at the start of spring snowmelt, the water content of the snowpack during the month of March, and the expected infiltration.
The following outlet stages should be included in the pond design. It is possible to design one device to meet all stages. Equations included in this step are based on certain assumptions about which types of outlet structures will be used to control the various stages. If the designer chooses to use different structure types, the specific equations used to determine stage-discharge relationships will change, but the general approach will remain the same.
The average release rate for Vwq is computed as
\(Q_{wq_avg} = V_{wq} / t_{wq}\)
where:
From the stage-storage table, find the elevation associated with Vwq. Calculate the approximate average head on the water quality outlet as
\(h_{wq_avg} = (E_{wq} - E_{PermPool}) / 2\)
where:
The required orifice cross sectional area can then be indirectly computed using the orifice equation
\(Q_{wq_avg} = CA_{wq} \sqrt{2gh _{wq avg}}\)
where:
The diameter of the orifice is then
\(d_{wq} = 2 \sqrt{A_{wq} / \pi}\)
The rate of discharge from the orifice for any head value hwq on the orifice can then be computed as
\(Q_{wq} = CA_{wq} \sqrt{2gh_{wq}}\)
Use this equation to check that your discharge rate meets the CGP.
Using the determined size information, incorporate the outlet structures into the pond design. Be aware of concerns associated with frozen conditions, particularly the risk of clogging or blockage of outlet structures with ice and the importance of burying pipes below the frost line.
The NRCS has compiled additional design guidance and requirements for spillways and embankments (NRCS Pond 378 Conservation Practice Standard for Minnesota. The following items are some of the key guidelines to adhere to in the design of spillways and embankments.
To prevent freezing and blockage of inflow, it is Highly Recommended that inlet pipes not be fully submerged and that they be buried below the frost line. The Minnesota Department of Transportation has developed frost and thaw depths for several Minnesota sites.
It is also Highly Recommended to design the inlet to reduce or prevent scour, by including riprap or flow diffusion devices such as plunge pools or berms.
The size of the sediment forebay was determined in Step 6. It is Recommended that a sediment marker be included in the forebay to indicate the need for sediment removal in the future. A hard bottom surface in the forebay is also Recommended in order to make sediment removal easier.
As discussed in Step 6, a weir structure added to the forebay will ensure that some pretreatment storage is available, even when the normal forebay is frozen.
The access routes should be designed with a minimum 8 feet width and maximum 15 percent slope.
Safety features such as obstructive planting that make access difficult, signs warning against fishing and swimming, fencing, and grates over outlet structures should be included as appropriate. Aesthetic enhancements such as trails or benches can also be included.
Additional information on safety for construction sites is available from OSHA. OSHA has prepared a flow chart which will help site owners and operators determine if the site safety plan must address confined space procedures.
Check that the Vwq release rate does not exceed 5.66 cubic feet per second per acre (cfs/acre) of pond area.
Check that the Vpp is at least 1800 cubic feet per acre that drains to the pond.
Check that the permanent pool is between 3 feet and 10 feet deep.
Check that Vwq is equal to at least 1.0 inch of runoff from the net increase in impervious surfaces created by the project.
Determine applicable requirements for Qp10 and Qp100 release rates (e.g., pre-development rates), and check pond release rates (and freeboard) for the appropriate design events.
A landscaping and planting plan by a qualified professional for the pond and surrounding area should be prepared, utilizing native vegetation wherever possible.
Preparation of a plan for operation and maintenance of the pond and associated structures and landscaping is Highly Recommended. See the Operation and Maintenance section for further details.
Refer to the Cost Considerations section for information on preparing a cost estimate for stormwater ponds.
See CADD designs for design details for pond systems. The following details, with specifications, have been created for stormwater ponds:
This page was last edited on 30 September 2024, at 16:54.