m (→Benefits) |
m |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{alert|Link to a Word version [[File:Runoff Volume Minimization green roofs.docx]] of this fact sheet|alert-info}} | ||
+ | {{alert|Green roofs consist of a series of layers that create an environment suitable for plant growth without damaging the underlying roof system. Green roofs create green space for public benefit, energy efficiency, and stormwater retention/ detention.|alert-success}} | ||
+ | |||
Green roofs consist of a series of layers that create an environment suitable for plant growth without damaging the underlying roof system. Green roofs create green space for public benefit, energy efficiency, and stormwater retention/ detention. | Green roofs consist of a series of layers that create an environment suitable for plant growth without damaging the underlying roof system. Green roofs create green space for public benefit, energy efficiency, and stormwater retention/ detention. | ||
Line 56: | Line 59: | ||
*SCS Soil Type (can be used in C&D soil types with modifications (e.g. underdrains)) - NA | *SCS Soil Type (can be used in C&D soil types with modifications (e.g. underdrains)) - NA | ||
*Freeze/ Thaw Suitability - Good | *Freeze/ Thaw Suitability - Good | ||
− | * | + | *Hotspot Runoff (use impermeable liner) - Suitable |
Note: Pollution removal percentages apply to volume of runoff treated, and not to volume by-passed | Note: Pollution removal percentages apply to volume of runoff treated, and not to volume by-passed | ||
Line 65: | Line 68: | ||
There are two systems of green roofs, extensive and intensive, composed of the same system of layers. Extensive systems are lighter, typically have 6 inches or less of growing medium, use drought tolerant vegetation, and can structurally support limited uses (such as maintenance personnel). Intensive systems are heavier, have a greater soil depth, can support a wider range of plants, and can support increased pedestrian traffic. | There are two systems of green roofs, extensive and intensive, composed of the same system of layers. Extensive systems are lighter, typically have 6 inches or less of growing medium, use drought tolerant vegetation, and can structurally support limited uses (such as maintenance personnel). Intensive systems are heavier, have a greater soil depth, can support a wider range of plants, and can support increased pedestrian traffic. | ||
<p>Rainfall is initially intercepted by vegetation, held on foliage, or soaked up by plant roots. Any remaining runoff filters through the growing medium and is drained away from the roof’s surface by the drainage layer. This water can be captured in cisterns to irrigate plants or for other re-use purposes. Some drainage systems use small depressions to store excess water for uptake during drier conditions ([http://www.rwmwd.org/index.asp?Type=B_BASIC&SEC=%7B399EA196-60B5-4C83-A433-8B97901418D1%7D RCWD]), while others provide an overflow for larger rainfall events.</p> | <p>Rainfall is initially intercepted by vegetation, held on foliage, or soaked up by plant roots. Any remaining runoff filters through the growing medium and is drained away from the roof’s surface by the drainage layer. This water can be captured in cisterns to irrigate plants or for other re-use purposes. Some drainage systems use small depressions to store excess water for uptake during drier conditions ([http://www.rwmwd.org/index.asp?Type=B_BASIC&SEC=%7B399EA196-60B5-4C83-A433-8B97901418D1%7D RCWD]), while others provide an overflow for larger rainfall events.</p> | ||
+ | |||
+ | <noinclude>==Related pages== | ||
+ | *[[Green roofs]] | ||
+ | *[[Overview for green roofs]] | ||
+ | *[[Types of green roofs]] | ||
+ | *[[Design criteria for green roofs]] | ||
+ | *[[Construction specifications for green roofs]] | ||
+ | <!--*[[Construction observations for green roofs]]--> | ||
+ | *[[Assessing the performance of green roofs]] | ||
+ | *[[Operation and maintenance of green roofs]] | ||
+ | <!--*[[Calculating credits for green roofs]]--> | ||
+ | *[[Cost-benefit considerations for green roofs]] | ||
+ | *[[Plant lists for green roofs]] | ||
+ | <!--*[[Additional considerations for green roofs]]--> | ||
+ | *[[Case studies for green roofs]] | ||
+ | *[[Links for green roofs]] | ||
+ | *[[References for green roofs]] | ||
+ | *[[Supporting material for green roofs]] | ||
+ | *[[Green roofs terminology and glossary]] | ||
+ | *[[Green roof fact sheet]] | ||
+ | *[[Requirements, recommendations and information for using green roofs as a BMP in the MIDS calculator]]</noinclude> | ||
+ | |||
+ | <noinclude>[[Category:Level 3 - Best management practices/Structural practices/Green roof]]</noinclude> |
Green roofs consist of a series of layers that create an environment suitable for plant growth without damaging the underlying roof system. Green roofs create green space for public benefit, energy efficiency, and stormwater retention/ detention.
Structural load capacity, how much weight the roof can hold, is a major factor in determining whether the green roof is “extensive” or “intensive”. Vegetation selection is based on numerous factors including, growth medium depth, microclimate, irrigation availability and maintenance. A leak detection system is recommended to quickly detect and locate leaks.
For a literature review of green roof benefits, see File:Green roof benefits.docx.
See Unified sizing criteria for explanation of these terms.
NA Toxins - Hydrocarbons, Pesticides
Note: Pollution removal percentages apply to volume of runoff treated, and not to volume by-passed
There are two systems of green roofs, extensive and intensive, composed of the same system of layers. Extensive systems are lighter, typically have 6 inches or less of growing medium, use drought tolerant vegetation, and can structurally support limited uses (such as maintenance personnel). Intensive systems are heavier, have a greater soil depth, can support a wider range of plants, and can support increased pedestrian traffic.
Rainfall is initially intercepted by vegetation, held on foliage, or soaked up by plant roots. Any remaining runoff filters through the growing medium and is drained away from the roof’s surface by the drainage layer. This water can be captured in cisterns to irrigate plants or for other re-use purposes. Some drainage systems use small depressions to store excess water for uptake during drier conditions (RCWD), while others provide an overflow for larger rainfall events.
This page was last edited on 3 December 2022, at 22:40.