Line 144: | Line 144: | ||
*If Media Mix C or D is used, or if a media mix other than C or D is used and soil phosphorus as measured using the [http://soiltesting.tamu.edu/files/mehlich3.pdf Mehlich 3 test] or a suitable alternative test is 30 milligrams per kilogram or less, the annual dissolved phosphorus credit applied to the filtered water volume is calculated by | *If Media Mix C or D is used, or if a media mix other than C or D is used and soil phosphorus as measured using the [http://soiltesting.tamu.edu/files/mehlich3.pdf Mehlich 3 test] or a suitable alternative test is 30 milligrams per kilogram or less, the annual dissolved phosphorus credit applied to the filtered water volume is calculated by | ||
− | <math>credit= | + | <math>credit=20percent((D_M- D_U))/(2 ft)</math> |
where (D<sub>M</sub> - D<sub>U</aub>) represents the media depth above the underdrain. The credit is calculated as a percent reduction with a maximum value of 20 percent for media depths above the underdrain greater than 2 feet. If the media depth above the underdrain is less than 2 feet the credit is reduced equivalently. | where (D<sub>M</sub> - D<sub>U</aub>) represents the media depth above the underdrain. The credit is calculated as a percent reduction with a maximum value of 20 percent for media depths above the underdrain greater than 2 feet. If the media depth above the underdrain is less than 2 feet the credit is reduced equivalently. | ||
*If a media mix other than C or D is used and the soil phosphorus as measured using the [http://soiltesting.tamu.edu/files/mehlich3.pdf Mehlich 3 test] or a suitable alternative test is greater than 30 milligrams per kilogram, the annual dissolved phosphorus credit is 0 percent of the filtered water volume. | *If a media mix other than C or D is used and the soil phosphorus as measured using the [http://soiltesting.tamu.edu/files/mehlich3.pdf Mehlich 3 test] or a suitable alternative test is greater than 30 milligrams per kilogram, the annual dissolved phosphorus credit is 0 percent of the filtered water volume. | ||
*If a media mix other than C or D is used and the soil phosphorus has not been determined, the annual dissolved phosphorus credit is 0 percent of the filtered water volume. | *If a media mix other than C or D is used and the soil phosphorus has not been determined, the annual dissolved phosphorus credit is 0 percent of the filtered water volume. | ||
− | An additional annual dissolved phosphorus credit of 40 percent of the filtered water volume may be received if [http://stormwater.pca.state.mn.us/index.php/Soil_amendments_to_enhance_phosphorus_sorption phosphorus-sorbing amendments] are used. Acceptable amendments include the following: | + | *An additional annual dissolved phosphorus credit of 40 percent of the filtered water volume may be received if [http://stormwater.pca.state.mn.us/index.php/Soil_amendments_to_enhance_phosphorus_sorption phosphorus-sorbing amendments] are used. Acceptable amendments include the following: |
**5 percent by volume elemental iron filings above the internal water storage (IWS) layer or elevated underdrain; | **5 percent by volume elemental iron filings above the internal water storage (IWS) layer or elevated underdrain; | ||
**minimum 5 percent by volume sorptive media above IWS layer or elevated underdrain; | **minimum 5 percent by volume sorptive media above IWS layer or elevated underdrain; |
For a biofiltration BMP with an underdrain at the bottom, most of the stormwater captured by the BMP is lost to the underdrain. However, some stormwater infiltrates through the basin bottom and sidewalls if these do not have an impermeable liner. Evapotranspiration also occurs from vegetation in the biofiltration BMP. For a biofiltration system with an elevated underdrain, in addition to volume losses through the sidewalls and through evapotranspiration, the water stored between the underdrain and the native soils is captured and infiltrated. In a bioretention BMP with an underdrain, all pollutants in infiltrated water are removed, while pollutants are removed through filtration for the water that flows through an underdrain.
For biofiltration systems, the user must input the following parameters to calculate the volume and pollutant load reductions associated with the BMP.
The following are requirements or recommendations for inputs into the MIDS calculator. If the following are not met, an error message will inform the user to change the input to meet the requirement.
\(DDT_calc=D_U/(I_R/ 12)\)
Where DU is the depth below the underdrain (ft); and IR is the infiltration rate of the native soils (inches/hr).
If the DDTcalc is greater than the user defined required drawdown time then the user will be prompted to enter a new depth below the underdrain or infiltration rate of the native soils.
“Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously following the Kerplunk method.
The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP [V]” is calculated using BMP inputs provided by the user. For this BMP, the volume reduction credit methodology is determined by the location of the underdrain.
Underdrain located at BMP bottom: If the underdrain is located at the bottom of the BMP, then the “Volume reduction capacity of BMP [V]” is determined based on infiltration into the bottom of the BMP (Vinf_b), infiltration into the side slopes of the BMP (Vinf_s), and evapotranspiration in the planting media above the underdrain (VET).
Even with an underdrain present, under saturated media conditions some water will infiltrate through the bottom soils as water in the basin draws down. The volume of water lost through the bottom (Vinf_b) of the BMP equals the following
\(V_(Inf_B)=I_R*(DDT)*A_B/(12in/ft)\)
Where
IR is an infiltration rate into the native soils of 0.06 inches per hour; AB is the surface area at the bottom of the BMP in ft2; and DDT is the drawdown time in hours.
The default infiltration rate is set at 0.06 inches per hour to represent a D soil. This rate was selected because it is assumed most of the stormwater will pass through the underdrain before it can infiltrate through the bottom of the BMP. This may be a conservative assumption if underdrains are small, spaced far apart, and the underlying soil has an infiltration rate greater than 0.06 inches per hour. Conversely, more closely spaced or larger underdrains may allow the basin to drain in less than the required drawdown time, resulting in a slight overestimation of infiltration loss through the basin bottom. If the user specifies that an impermeable liner is present at the bottom of the BMP, then no credit is given for infiltration into the bottom soils.
Under saturated conditions within the filter media, water will infiltrate through the sides of the basin as the stormwater draws down through the underdrain. Stormwater lost from a sloped sidewall (Vinf_s) is considered to infiltrate vertically into the surrounding soil. The volume of water infiltrated through the sidewalls equals the following
\(V_(Inf__S )=I_R*(DDT/2)*(A_O-A_U )/(12in/ft)\)
Where:
AO is the surface area at overflow in ft2; and AU is the surface area at the underdrain in ft2
The drawdown time is reduced by a factor of 2 to account for the drop in water level within the BMP over the drawdown period. The drop in water level is therefore considered to be linear over the drawdown time. A conservative default infiltration rate of 0.06 inches per hour is used because it is assumed that most of the stormwater will pass through the underdrain before it can infiltrate through the side walls of the BMP. If the user specifies that an impermeable liner is present on the sides of the BMP, then no credit is given for infiltration into the side soils.
The volume of water lost through evapotranspiration (VET) is the smaller of two calculated values, potential ET and measured ET.
\(ET_pot=((D_M-D_U )*(A_M+A_U)/2*(FC-WP))\)
where DM is the total media depth in feet, DU is the depth under the underdrain in feet, AM is the surface area of the media in square feet, AU is the surface area at the underdrain in square feet, and (FC – WP) is the difference between field capacity and wilting point.
\(〖ET〗_mea=A_M*0.2 in/day*0.5*3 days/12 in/ft = 0.025A_M\)
If trees are planted in the bioretention basin then ETmea is multiplied by a factor of 3.
Measured ET and potential ET are compared and the volume lost to ET is the smaller of the two values.
Elevated Underdrain: If the underdrain is elevated above the bottom of the BMP, then the volume reduction credit is determined based on the storage capacity in the media between the underdrain and the native soils, infiltration through the sides of the BMP (Vinf_s), and evapotranspiration in the planting media above the underdrain (VET).
When the underdrain is elevated, storage capacity becomes available in the media between the underdrain and the native soils. The storage capacity credit replaces the credit given for infiltration into the bottom of the BMP below the underdrain (V_(Inf_B)). The volume of water captured below the underdrain equals the following
\(V= [(A_U+A_B)/2*(n-FC)*D_U ]\)
Where:
AU is the surface area at the underdrain in ft2;
AB is the surface area at the bottom of the basin in ft2;
(n - FC) is the media porosity – field capacity of the soils; and
DU is the depth of the media below the underdrain in ft
The stored water must drain within the specified drawdown time. The underlying soil controls the infiltration rate. The user must input the soil with the most restrictive hydraulic conductivity in the 3 feet directly below the basin.
In addition to the credit given for the storage capacity below the underdrain, a biofiltration system with an elevated underdrain also receives volume reduction credit for infiltration into the sloped sidewall as well as evapotranspiration. Credit is given following the same methods described when the underdrain is located at the bottom of the BMP (see discussion above). A biofiltration system with an elevated underdrain thus behaves as a dual system, with the portion above the drain acting like a biofiltration system with an underdrain at the bottom and the portion below the underdrain acting like a bioinfiltration system.
The “Volume of retention provided by BMP” is the amount of volume credit the BMP provides toward the performance goal. This value is equal to the “Volume reduction capacity of BMP [V]”, calculated using the above method, as long as the volume reduction capacity is less than or equal to the “Required treatment volume.” If “Volume reduction capacity of BMP [V]” is greater than “Required treatment volume”, then the BMP volume credit is equal to “Required treatment volume.” This check makes sure the BMP is not getting more credit than the amount of water it receives. For example, if the BMP is oversized the user will only receive credit for “Required treatment volume” routed to the BMP.
Pollutant load reductions are calculated on an annual basis. Therefore, the first step in calculating annual pollutant load reductions is converting “Volume reduction capacity of BMP,” which is an instantaneous volume reduction, to an annual volume reduction percentage. This is accomplished through the use of performance curves (add link to addendum) developed from multiple modeling scenarios. The performance curves use “Volume reduction capacity of BMP [V]”, the infiltration rate of the underlying soils, the contributing watershed percent impervious area, and the size of the contributing watershed to calculate a percent annual volume reduction. While oversizing a BMP above “Required treatment volume” will not provide additional credit towards the performance goal volume, it may provide additional pollutant reduction.
A 100 percent removal is credited for all pollutants associated with the reduced volume of stormwater. Stormwater captured by the bioretention system but not infiltrated or consumed through ET is assumed to flow through the filter media and out the underdrain. A constant 60 percent removal rate is applied to the filtered stormwater for TSS reduction. The removal rates of the filtered stormwater for annual particulate phosphorus and dissolved phosphorus depend on the answers given to the three user inputs: “Bioretention planting media mix”, “Is the P content of the media less than 30 mg/kg?” and “Is a soil amendment used to attenuate phosphorus?”
Particulate Phosphorus: The particulate phosphorus credit given is either 0 percent or 45 percent depending on the media mix used and the P content of the media.
Dissolved Phosphorus: The dissolved phosphorus credit given is between 0 percent and 60 percent depending on the media mix, the media P content, and if the media was amended to attenuate phosphorus.
\(credit=20percent((D_M- D_U))/(2 ft)\)
where (DM - DU</aub>) represents the media depth above the underdrain. The credit is calculated as a percent reduction with a maximum value of 20 percent for media depths above the underdrain greater than 2 feet. If the media depth above the underdrain is less than 2 feet the credit is reduced equivalently.
The removal rates of the filtered stormwater for annual particulate phosphorus and dissolved phosphorus is summarized in the following table.