Line 36: | Line 36: | ||
===Volume Reduction=== | ===Volume Reduction=== | ||
− | The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP [V]” is calculated using BMP inputs provided by the user. A stormwater disconnection BMP does not have storage capacity similar to other BMPs in the MIDS calculator. Volume reduction occurs through infiltration as the stormwater travels over the effective pervious area. To obtain an instantaneous stormwater volume credit modeling was conducted. A modeling analysis was performed to quantify the runoff reduction achieved from redirecting runoff from impervious areas to pervious areas of varying size and soil type. The long-term, 35-year continuous simulation XP-SWMM model developed in support of the MIDS performance goal development (Barr, 2011) was modified to represent watersheds with I/P ratios ranging from 0.2:1 to 50:1 and hydrologic soil types of A, B, C, and D. See the Assessment of MIDS Performance Goal Alternatives: Runoff Volumes, Runoff Rates, and Pollutant Removal Efficiencies | + | The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP [V]” is calculated using BMP inputs provided by the user. A stormwater disconnection BMP does not have storage capacity similar to other BMPs in the MIDS calculator. Volume reduction occurs through infiltration as the stormwater travels over the effective pervious area. To obtain an instantaneous stormwater volume credit modeling was conducted. A modeling analysis was performed to quantify the runoff reduction achieved from redirecting runoff from impervious areas to pervious areas of varying size and soil type. The long-term, 35-year continuous simulation [https://archive.epa.gov/nrmrl/archive-etv/web/html/ XP-SWMM] model developed in support of the [http://stormwater.pca.state.mn.us/index.php/Performance_goals_for_new_development,_re-development_and_linear_projects MIDS performance goal] development (Barr, 2011) was modified to represent watersheds with I/P ratios ranging from 0.2:1 to 50:1 and [http://stormwater.pca.state.mn.us/index.php/Glossary#H hydrologic soil types] of A, B, C, and D. See the [https://www.pca.state.mn.us/sites/default/files/p-gen3-12w.pdf Assessment of MIDS Performance Goal Alternatives: Runoff Volumes, Runoff Rates, and Pollutant Removal Efficiencies] |
Stormwater disconnection/Impervious surface disconnection spreads runoff generated from parking lots, driveways, rooftops, sidewalks and other impervious surfaces onto adjacent pervious areas where it can be infiltrated. All pollutants in the infiltrated water are credited as being reduced. Pollutants in the stormwater that bypasses the BMP receive 68% removal for TSS and 0% reduction for both dissolved and particulate phosphorus.
For stormwater disconnection systems, the user must input the following parameters to calculate the volume and pollutant load reductions associated with the BMP.
The following are requirements or recommendations for inputs into the MIDS calculator. If the following are not met, an error message will inform the user to change the input to meet the requirement.
“Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP, plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously following the kerplunk method.
The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP [V]” is calculated using BMP inputs provided by the user. A stormwater disconnection BMP does not have storage capacity similar to other BMPs in the MIDS calculator. Volume reduction occurs through infiltration as the stormwater travels over the effective pervious area. To obtain an instantaneous stormwater volume credit modeling was conducted. A modeling analysis was performed to quantify the runoff reduction achieved from redirecting runoff from impervious areas to pervious areas of varying size and soil type. The long-term, 35-year continuous simulation XP-SWMM model developed in support of the MIDS performance goal development (Barr, 2011) was modified to represent watersheds with I/P ratios ranging from 0.2:1 to 50:1 and hydrologic soil types of A, B, C, and D. See the Assessment of MIDS Performance Goal Alternatives: Runoff Volumes, Runoff Rates, and Pollutant Removal Efficiencies