m (→References) |
|||
Line 344: | Line 344: | ||
==References== | ==References== | ||
+ | *Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A. and Sherlock, R. R. 2011. [https://www.researchgate.net/publication/237079582_Biochar_induced_soil_microbial_community_change_Implications_for_biogeochemical_cycling_of_carbon_nitrogen_and_phosphorus Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus]. Pedobiologia, vol 54, pp309–320. | ||
*Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, Cowie A, Harden S, Smillie R.. 2017. ''Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter''. Waste Manag. 61:138-149. doi: 10.1016/j.wasman.2016.11.027. Epub 2016 Dec 8. | *Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, Cowie A, Harden S, Smillie R.. 2017. ''Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter''. Waste Manag. 61:138-149. doi: 10.1016/j.wasman.2016.11.027. Epub 2016 Dec 8. | ||
+ | *Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. and Amelung, W. 2012. ''Physical activation of biochar and its meaning for soil fertility and nutrient leaching – a greenhouse experiment''. Soil Use and Management. 28:177–184. | ||
*Brewer, C.E. 2012. [https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3291&context=etd Biochar characterization and engineering]. PhD thesis. Iowa State University. | *Brewer, C.E. 2012. [https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3291&context=etd Biochar characterization and engineering]. PhD thesis. Iowa State University. | ||
*Budai; A. R. Zimmerman; A.L. Cowie; J.B.W. Webber; B.P. Singh; B. Glaser; C. A. Masiello; D. Andersson; F. Shields; J. Lehmann; M. Camps Arbestain; M. Williams; S. Sohi; S. Joseph. 2013. [https://www.biochar-international.org/wp-content/uploads/2018/06/IBI_Report_Biochar_Stability_Test_Method_Final.pdf Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability]. Accessed December 12, 2019. | *Budai; A. R. Zimmerman; A.L. Cowie; J.B.W. Webber; B.P. Singh; B. Glaser; C. A. Masiello; D. Andersson; F. Shields; J. Lehmann; M. Camps Arbestain; M. Williams; S. Sohi; S. Joseph. 2013. [https://www.biochar-international.org/wp-content/uploads/2018/06/IBI_Report_Biochar_Stability_Test_Method_Final.pdf Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability]. Accessed December 12, 2019. | ||
*Cao, T., Wenfu Chen, Tiexin Yang, Tianyi He, Zunqi Liu, Jun Meng. 2017. [https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_3_6366_Cao_Surface_Characterization_Aged_Biochar_Soil Surface Characterization of Aged Biochar Incubated in Different Types of Soil]. BioResources. 12:3: 6366-6377 | *Cao, T., Wenfu Chen, Tiexin Yang, Tianyi He, Zunqi Liu, Jun Meng. 2017. [https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_3_6366_Cao_Surface_Characterization_Aged_Biochar_Soil Surface Characterization of Aged Biochar Incubated in Different Types of Soil]. BioResources. 12:3: 6366-6377 | ||
+ | *Chan, K. Y. and Xu, Z. 2009. ''Biochar: nutrient properties and their enhancement''. in J. Lehmann and S. Joseph (eds) Biochar for Environmental Management, Earthscan. London, pp 67–84. | ||
+ | *Clough, T. J. and Condron, L. M. 2010. [https://www.researchgate.net/publication/46217413_Biochar_and_the_Nitrogen_Cycle_Introduction Biochar and the nitrogen cycle: introduction]. Journal of Environmental Quality. 39:1218–1223. | ||
*Conz, R., T. Abbruzzini, C.A. de Andrade, D.M.B.P. Milori. 2017. [https://www.researchgate.net/publication/319468119_Effect_of_Pyrolysis_Temperature_and_Feedstock_Type_on_Agricultural_Properties_and_Stability_of_Biochars Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars]. Agricultural Sciences 8:9:914-933. | *Conz, R., T. Abbruzzini, C.A. de Andrade, D.M.B.P. Milori. 2017. [https://www.researchgate.net/publication/319468119_Effect_of_Pyrolysis_Temperature_and_Feedstock_Type_on_Agricultural_Properties_and_Stability_of_Biochars Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars]. Agricultural Sciences 8:9:914-933. | ||
+ | *Crutchfield, E. F., Merhaut, D. J., Mcgiffen, M. E. and Allen, E. B. 2010. [https://meridian.allenpress.com/jeh/article/36/4/126/431043/Effects-of-Biochar-on-Nutrient-Leaching-and Effects of biochar on nutrient leaching and plant growth]. Hortscience, vol 45, S163–S163. | ||
*DeLuca, T.H., M.D. MacKenzie, D.L. Jones. 2015. [https://www.researchgate.net/publication/302558326_Biochar_effects_on_soil_nutrient_transformations Biochar effects on soil nutrient transformations]. | *DeLuca, T.H., M.D. MacKenzie, D.L. Jones. 2015. [https://www.researchgate.net/publication/302558326_Biochar_effects_on_soil_nutrient_transformations Biochar effects on soil nutrient transformations]. | ||
*Ding, Y., Yu-Xue Liu, Wei-Xiang Wu, De-Zhi Shi, Min Yang, and Zhe-Ke Zhong. 2010. [https://www.researchgate.net/publication/225407749_Evaluation_of_Biochar_Effects_on_Nitrogen_Retention_and_Leaching_in_Multi-Layered_Soil_Columns Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns]. Water, Air, & Soil Pollution. Volume 213, Issue 1–4, pp 47–55. | *Ding, Y., Yu-Xue Liu, Wei-Xiang Wu, De-Zhi Shi, Min Yang, and Zhe-Ke Zhong. 2010. [https://www.researchgate.net/publication/225407749_Evaluation_of_Biochar_Effects_on_Nitrogen_Retention_and_Leaching_in_Multi-Layered_Soil_Columns Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns]. Water, Air, & Soil Pollution. Volume 213, Issue 1–4, pp 47–55. | ||
Line 361: | Line 366: | ||
*Iqbal, H., Manuel Garcia-Perez, Markus Flury. 2015. ''Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems''. Science of the Total Environment 521–522 (2015) 37–45 | *Iqbal, H., Manuel Garcia-Perez, Markus Flury. 2015. ''Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems''. Science of the Total Environment 521–522 (2015) 37–45 | ||
*Jahromi, N.B., and A. Fulcher. 2019. [https://www.researchgate.net/publication/336124619_What_Is_Biochar_and_How_Different_Biochars_Can_Improve_Your_Crops What is Biochar and How Different Biochars Can Improve Your Crops]. University of Tennessee Extension. Publication W829. Accessed 12/12/2019. | *Jahromi, N.B., and A. Fulcher. 2019. [https://www.researchgate.net/publication/336124619_What_Is_Biochar_and_How_Different_Biochars_Can_Improve_Your_Crops What is Biochar and How Different Biochars Can Improve Your Crops]. University of Tennessee Extension. Publication W829. Accessed 12/12/2019. | ||
+ | *Jeffery, S., Verheijen, F. G. A., Van Der Velde, M. and Bastos, A. C. 2011. ''A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis''. Agriculture Ecosystems and Environment. 144:175–187. | ||
*Jien, Shih-Hao, and Chien-Sheng Wang. 2013. [https://reader.elsevier.com/reader/sd/pii/S0341816213001604?token=208104BEE17913BC8F80F6248737F8196777BE3A62639432B1801DA46AA37B967A160408F1864779D6AC76E2175D8447&originRegion=us-east-1&originCreation=20211022023842 Effects of biochar on soil properties and erosion potential in a highly weathered soil]. Catena. 110:225-233 | *Jien, Shih-Hao, and Chien-Sheng Wang. 2013. [https://reader.elsevier.com/reader/sd/pii/S0341816213001604?token=208104BEE17913BC8F80F6248737F8196777BE3A62639432B1801DA46AA37B967A160408F1864779D6AC76E2175D8447&originRegion=us-east-1&originCreation=20211022023842 Effects of biochar on soil properties and erosion potential in a highly weathered soil]. Catena. 110:225-233 | ||
*Jindo, K., H. Mizumoto3, Y. Sawada, M. A. Sanchez-Monedero1, and T. Sonoki. 2014. [https://www.researchgate.net/publication/307656278_Physical_and_chemical_characterizations_of_biochars_derived_from_different_agricultural_residues Physical and chemical characterization of biochars derived from different agricultural residues]. Biogeosciences, 11, 6613–6621. | *Jindo, K., H. Mizumoto3, Y. Sawada, M. A. Sanchez-Monedero1, and T. Sonoki. 2014. [https://www.researchgate.net/publication/307656278_Physical_and_chemical_characterizations_of_biochars_derived_from_different_agricultural_residues Physical and chemical characterization of biochars derived from different agricultural residues]. Biogeosciences, 11, 6613–6621. | ||
+ | *Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. 2012. ''Biochar-mediated changes in soil quality and plant growth in a three year field trial''. Soil Biology and Biochemistry. 45:113–124. | ||
*Joseph, S.,P. Taylor, F. Rezende, K. Draper, A. Cowie. [https://biochar.international/guides/properties-fresh-aged-biochar/ The Properties of Fresh and Aged Biochar]. | *Joseph, S.,P. Taylor, F. Rezende, K. Draper, A. Cowie. [https://biochar.international/guides/properties-fresh-aged-biochar/ The Properties of Fresh and Aged Biochar]. | ||
+ | *Joseph, S. D., Downie, A., Munroe, P., Crosky, A. and Lehmann, J. 2007. [https://www.researchgate.net/publication/228483265_Biochar_for_Carbon_Sequestration_Reduction_of_Greenhouse_Gas_Emissions_and_Enhancement_of_Soil_Fertility_A_Review_of_the_Materials_Science Biochar for carbon sequesteration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science]. Proceedings from Australian Combustion Symposium. University of Sydney, Australia. pp1–4. | ||
*Kasak, K., Jaak Truu, Ivika Ostonen, Jürgen Sarjas, Kristjan Oopkaup, Päärn Paiste, Margit Kõiv-Vainik, Ülo Mander, Marika Truu. 2018. ''Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands''. Science of the Total Environment 639:67–74 | *Kasak, K., Jaak Truu, Ivika Ostonen, Jürgen Sarjas, Kristjan Oopkaup, Päärn Paiste, Margit Kõiv-Vainik, Ülo Mander, Marika Truu. 2018. ''Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands''. Science of the Total Environment 639:67–74 | ||
*Klasson, T.K. 2017. ''Biochar characterization and a method for estimating biochar quality from proximate analysis results''. Biomass and Bioenergy. 96:50-58. | *Klasson, T.K. 2017. ''Biochar characterization and a method for estimating biochar quality from proximate analysis results''. Biomass and Bioenergy. 96:50-58. | ||
*Laird, D., Pierce Flemming, Baiqun Wang, Robert Horton, Douglas Karlen. 2010. [https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1434&context=agron_pubs Biochar impact on nutrient leaching from a Midwestern agricultural soil. Agronomy Publications]. Iowa State University. 9 p. | *Laird, D., Pierce Flemming, Baiqun Wang, Robert Horton, Douglas Karlen. 2010. [https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1434&context=agron_pubs Biochar impact on nutrient leaching from a Midwestern agricultural soil. Agronomy Publications]. Iowa State University. 9 p. | ||
+ | *Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D. 2011. ''Biochar effects of soil biota – A review''. Soil Biology and Biochemistry. 43:1812–1836. | ||
*Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones PD, Codling G, Giesy JP. 2016. ''Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment''. Environ Pollut. 218:1-7. doi: 10.1016/j.envpol.2016.08.014. | *Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones PD, Codling G, Giesy JP. 2016. ''Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment''. Environ Pollut. 218:1-7. doi: 10.1016/j.envpol.2016.08.014. | ||
*Major, J. 2010. [https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Application.pdf Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems]. | *Major, J. 2010. [https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Application.pdf Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems]. | ||
Line 373: | Line 382: | ||
*Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W. 2018. ''Toxicity screening of biochar-mineral composites using germination tests''. Chemosphere. 207:91-100. doi:10.1016/j.chemosphere.2018.05.042. | *Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W. 2018. ''Toxicity screening of biochar-mineral composites using germination tests''. Chemosphere. 207:91-100. doi:10.1016/j.chemosphere.2018.05.042. | ||
*Nabiul Afrooz, A.R.M., Ana K. Pitol, Dianna Kitt, and Alexandria B. Boehm. 2018. ''Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters''. Environ Sci: Water Res and Tech. 12: | *Nabiul Afrooz, A.R.M., Ana K. Pitol, Dianna Kitt, and Alexandria B. Boehm. 2018. ''Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters''. Environ Sci: Water Res and Tech. 12: | ||
+ | *Nelson, N. O., Agudelo, S. C., Yuan, W. and Gan, J. 2011. ''Nitrogen and phosphorus availability in biochar-amended soils''. Soil Science. 176:218–226. | ||
*Nguyen, N.T. 2015. ''Adsorption Of Phosphorus From Wastewater Onto Biochar: Batch And Fixed-bed Column Studies''. | *Nguyen, N.T. 2015. ''Adsorption Of Phosphorus From Wastewater Onto Biochar: Batch And Fixed-bed Column Studies''. | ||
*Oleszczuk, P., Izabela Jo´sko, Marcin Ku´smierz. 2013. [https://www.academia.edu/22488554/Biochar_properties_regarding_to_contaminants_content_and_ecotoxicological_assessment Biochar properties regarding to contaminants content and ecotoxicological assessment]. Journal of Hazardous Materials 260 (2013) 375– 382. | *Oleszczuk, P., Izabela Jo´sko, Marcin Ku´smierz. 2013. [https://www.academia.edu/22488554/Biochar_properties_regarding_to_contaminants_content_and_ecotoxicological_assessment Biochar properties regarding to contaminants content and ecotoxicological assessment]. Journal of Hazardous Materials 260 (2013) 375– 382. | ||
*Quan G, Fan Q, Zimmerman AR, Sun J, Cui L, Wang H, Gao B, Yan J. 2020. ''Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products''. J Hazard Mater. 2020 Jan 15;382:121071. doi: 10.1016/j.jhazmat.2019.121071 | *Quan G, Fan Q, Zimmerman AR, Sun J, Cui L, Wang H, Gao B, Yan J. 2020. ''Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products''. J Hazard Mater. 2020 Jan 15;382:121071. doi: 10.1016/j.jhazmat.2019.121071 | ||
+ | *Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H. and Jones, D. L. 2012. ''Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate''. Agriculture, Ecosystems, and Environment. 158:192–199. | ||
*Rawat, J., J. Saxena, and P. Sanwal. 2018. [https://www.researchgate.net/publication/330942887_Biochar_A_Sustainable_Approach_for_Improving_Plant_Growth_and_Soil_Properties Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties]. In: Biochar - An Imperative Amendment for Soil and the Environment. DOI: 10.5772/intechopen.82151 | *Rawat, J., J. Saxena, and P. Sanwal. 2018. [https://www.researchgate.net/publication/330942887_Biochar_A_Sustainable_Approach_for_Improving_Plant_Growth_and_Soil_Properties Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties]. In: Biochar - An Imperative Amendment for Soil and the Environment. DOI: 10.5772/intechopen.82151 | ||
*Reddy, K.R., Tao Xie, and Sara Dastgheibi. 2014. ''Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff''. Journal Environ Eng. 140:12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000872 | *Reddy, K.R., Tao Xie, and Sara Dastgheibi. 2014. ''Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff''. Journal Environ Eng. 140:12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000872 | ||
+ | *Schultz, H. and Glaser, B. 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Soil Science and Plant Nutrition. 175:410–422. | ||
*Shamim Mia, Feike A. Dijkstra, and Balwant Singh. 2017. [https://www.researchgate.net/publication/317697694_Aging_Induced_Changes_in_Biochar's_Functionality_and_Adsorption_Behavior_for_Phosphate_and_Ammonium Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium]. Environ. Sci. Technol. 51:8359−8367. DOI: 10.1021/acs.est.7b00647 | *Shamim Mia, Feike A. Dijkstra, and Balwant Singh. 2017. [https://www.researchgate.net/publication/317697694_Aging_Induced_Changes_in_Biochar's_Functionality_and_Adsorption_Behavior_for_Phosphate_and_Ammonium Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium]. Environ. Sci. Technol. 51:8359−8367. DOI: 10.1021/acs.est.7b00647 | ||
*Soinne, H., Jarkko Hovi, PriitTammeorg, EilaTurtola. 2014. ''Effect of biochar on phosphorus sorption and clay soil aggregate stability''. Geoderma. Volumes 219–220, May 2014, Pages 162-167. | *Soinne, H., Jarkko Hovi, PriitTammeorg, EilaTurtola. 2014. ''Effect of biochar on phosphorus sorption and clay soil aggregate stability''. Geoderma. Volumes 219–220, May 2014, Pages 162-167. | ||
Line 387: | Line 399: | ||
*Yao, Y., Bin Gao, Mandu Inyang, Andrew R. Zimmerman, Xinde Cao, Pratap Pullammanappallil, Liuyan Yang. 2011 ''Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential''. Bioresource Technology. 102:6273-6278 | *Yao, Y., Bin Gao, Mandu Inyang, Andrew R. Zimmerman, Xinde Cao, Pratap Pullammanappallil, Liuyan Yang. 2011 ''Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential''. Bioresource Technology. 102:6273-6278 | ||
*Yaoa, Y., Bin Gaoa, Mandu Inyanga, Andrew R. Zimmermanb, Xinde Caoc, Pratap Pullammanappallila, Liuyan Yangd. 2011. [https://people.clas.ufl.edu/azimmer/files/Publication-pdf/Yao11_Removal-of-phosphate-from-aqueous-solution-by-biochar-derived-from.pdf Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings]. Journal of Hazardous Materials 190:501–507 | *Yaoa, Y., Bin Gaoa, Mandu Inyanga, Andrew R. Zimmermanb, Xinde Caoc, Pratap Pullammanappallila, Liuyan Yangd. 2011. [https://people.clas.ufl.edu/azimmer/files/Publication-pdf/Yao11_Removal-of-phosphate-from-aqueous-solution-by-biochar-derived-from.pdf Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings]. Journal of Hazardous Materials 190:501–507 | ||
+ | *Yoo, G. and Kang, H. 2010. [http://www.git4cc.com/korean/files/22_1384152714.pdf Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment]. Journal of Environmental Quality. 41:1193–1202. | ||
*Yuan-Ying Wang, Xiang-Rong Jing, Ling-Li Li, Wu-Jun Liu, Zhong-Hua Tong, Hong Jiang. 2017. ''Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms''. ACS Sustainable Chem. Eng. 2017, 5, 1, 481-488. https://doi.org/10.1021/acssuschemeng.6b01859 | *Yuan-Ying Wang, Xiang-Rong Jing, Ling-Li Li, Wu-Jun Liu, Zhong-Hua Tong, Hong Jiang. 2017. ''Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms''. ACS Sustainable Chem. Eng. 2017, 5, 1, 481-488. https://doi.org/10.1021/acssuschemeng.6b01859 | ||
*Zhang, M., Muhammad Riaz, Lin Zhang, Zeinab El-desouki, and Cuncang Jiang. [https://www.researchgate.net/publication/333737870_Biochar_Induces_Changes_to_Basic_Soil_Properties_and_Bacterial_Communities_of_Different_Soils_to_Varying_Degrees_at_25_mm_Rainfall_More_Effective_on_Acidic_SoilsImage_1TIFImage_2TIFImage_3TIFImage_4TI Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils]. 2019. Frontiers Microbio. 12:10:1321. doi: 10.3389/fmicb.2019.01321 | *Zhang, M., Muhammad Riaz, Lin Zhang, Zeinab El-desouki, and Cuncang Jiang. [https://www.researchgate.net/publication/333737870_Biochar_Induces_Changes_to_Basic_Soil_Properties_and_Bacterial_Communities_of_Different_Soils_to_Varying_Degrees_at_25_mm_Rainfall_More_Effective_on_Acidic_SoilsImage_1TIFImage_2TIFImage_3TIFImage_4TI Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils]. 2019. Frontiers Microbio. 12:10:1321. doi: 10.3389/fmicb.2019.01321 |
Biochar is a charcoal-like substance that’s made by burning organic material such as crop residues; yard, food and forestry wastes; and animal manures. Beneficial properties of biochar include the following.
Regarding water quality, additional research is needed, but generally:
Biochar is also found to be beneficial for composting. |
This page provides information on biochar. While providing extensive information on biochar, there is a section focused specifically on stormwater applications for biochar.
Biochar is a charcoal-like substance that’s made by burning organic material from biomass. The two most common proceesses for producing biochar are pyrolysis and gasification. During pyrolysis, the organic material is heated to 250-800oC in a limited oxygen environment. Gasification involves temperatures greater than 700oC in the presence of oxygen.
Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc); yard, food and forestry wastes; and animal manures. Clean feedstocks with 10 to 20 percent moisture and high lignin content are recommended. Examples are field residues and woody biomass. Using contaminated feedstocks, including feedstocks from railway embankments or contaminated land, can introduce toxins into the soil, drastically increase soil pH and/or inhibit plants from absorbing minerals. The most common contaminants are heavy metals—including cadmium, copper, chromium, lead, zinc, mercury, nickel and arsenic, and polycyclic aromatic hydrocarbons (PAHs).
Biochar is black, highly porous, lightweight, fine-grained and has a large surface area. Approximately 70 percent of its composition is carbon. The remaining percentage consists of nitrogen, hydrogen and oxygen among other elements. Biochar’s chemical composition varies depending on the feedstocks used to make it and methods used to heat it.
Biochar benefits for soil may include but are not limited to
Biochar is also found to be beneficial for composting, since it reduces greenhouse gas emissions and prevents the loss of nutrients in the compost material. It also promotes microbial activity, which in turn accelerates the composting process. Plus, it helps reduce the compost’s ammonia losses, bulk density and odor (Spears, 2018; Hoffman-Krull, 2019).
Biochar has several potential applications for stormwater management.
Possible implications for stormwater management include the following.
Potential biochar stormwater applications (adapted from Table 6 in Mohanty et al. (2018)).
Link to this table
Practice | Potential benefits of biochar |
---|---|
Downspout filter boxes |
|
Tree boxes |
|
Green roofs |
|
Biofiltration |
|
Constructed ponds and wetlands |
|
Sand filters |
|
Level spreader/filter strips |
|
Swales |
|
Infiltration trench/basin |
|
Recommended reading
Although the basic structure of all biochars is similar, the physical-chemical properties of biochar varies with the source material and with the temperature used in production.
Since a wide variety of organic material can be used to produce biochar, it is not feasible to discuss each material separately. We provide the following general conclusions. Literature used to develop these conclusions is provided at the end of this section.
The International Biochar Initiative (see Appendix 6) provides a classification system for biochar feedstocks, shown below.
Literature
Changes in the properties of biochar result from loss of volatile organic matter as temperature increases. This leads to a gradual loss in the number of functional groups on the biochar and increased aromaticity as temperature increases.
In general, the following conclusions are applicable for biochar used in stormwater applications.
The following information comes from a literature review of the effects of production temperature on biochar
This section includes a discussion of chemical and physical properties of biochar, and potential contaminants in biochar.
The properties of biochar vary depending on the feedstock and production temperature, as discussed above. Consequently there is considerable variability in the chemical and physical properties of different biochars. The table below summarizes data from our literature review. Some conclusions from the literature are summarized below.
Chemical and physical properties of biochar.
Link to this table
Property | Range found in literature1 | Median value from literature |
---|---|---|
Total phosphorus (%) | 0.0061 - 1.086 | 0.0618 |
Total nitrogen (%) | 1.2 - 2.4 | 0.88 |
Total potassium (%) | 0.0079 - 1.367 | 0.181 |
Total carbon (%) | 24.2 - 90.9 | 66 |
Total hydrogen (%) | 0.67 - 4.3 | 2.8 |
Total oxygen (%) | 2.69 - 28.7 | 16.3 |
pH | 6.43 - 10.4 | 9.66 |
Cation exchange capacity (cmol/kg) | 0.1 - 562 | 43.1 |
Surface area (m2/g | 2.78 - 203 | 30.6 |
Electrical conductivity (μs/cm) | 100 - 2221 | 231.5 |
Pore volume (cm3/g) | 0.006 - 0.51 | 0.036 |
Total calcium (%) | 0.0954 - 3.182 | 0.590 |
Total magnesium (%) | 0.0297 - 0.2801 | 0.0587 |
Total copper (%) | 0.0001 - 0.0078 | 0.00025 |
Total zinc (%) | 0.0002 - 0.0152 | 0.00135 |
Total aluminum (%) | 0.001 - 0.1929 | 0.0290 |
Total iron (%) | 0.0009 - 0.2209 | 0.0333 |
Total manganese (%) | 0.0001 - 0.1025 | 0.00145 |
Total sulfur (%) | 0.01 - 0.44 | 0.05 |
Primary references for this data:
|
Potential contaminants associated with biochar are a function of the source material and production temperature. Of greatest concern are metals and polycyclic aromatic hydrocarbons (PAHs). Oleszcuk et al. (2013) examined metal and PAH concentrations in four biochars (elephant grass, coconut shell, wicker, and wheat straw). Metal concentrations (mg/kg) in the biochars are summarized below. Tier 1 Soil Reference Values (SRVs) are included in parentheses (Tier 1 values correspond with no restrictions on use of the soil).
Concentrations in biochar are well below Tier 1 SRVs.
In the study by Oleszcuk et al. (2013), total PAHs ranged from 1,124.2 ng/g to 28,339.1 ng/g (ppb). The dominant group of PAHs were 3-ring compounds which comprised 64.6% to 82.6% of total PAHs content. The primary compounds included, in order of abundance, phenanthrene, fluorene, anthracene, and pyrene. No 6-ring PAHs were observed. Concentrations of PAHs and other organic contaminants, such as dioxins, decreases with increasing pyrolysis temperature (Lyu et al., 2016).
In general, biochars mixed with soil do not inhibit germination or root growth. Biochar may enhance soil fertility by providing nutrients or more commonly by slowing the release of nutrients from materials such as compost. Toxic effects have been observed for some invertebrates, indicating that in sensitive environments, biochar testing is advisable (Oleszcuk et al., 2013; Mumme et al., 2018; Flesch et al., 2019; Wang et al., 2017) .
In this section we provide information on effects of biochar on pollutant attenuation and the physical properties of soil and bioretention media.
Biochar is not likely to provide significant phosphorus retention in bioretention practices unless impregnated with cations (e.g. magnesium) during production at relatively low temperatures (e.g. less than 600oC.) |
Biochar may have several properties for managing stormwater, such as increased water and pollutant retention, improving soil physical properties, and attenuating bacteria and pathogens. Biochar has been examined as a potential amendment to engineered media in bioretention or other stormwater control practices. With respect to phosphorus, information from the literature is mixed. Below are summaries from several studies.
Because of a large surface area and internal porosity, biochar can affect soil physical properties (Mohanty et al., 2018; Herrera Environmental Consultants, 2015; Iqbal et al., 2015; Imhoff, 2019; Jien and Wang, 2013). These effects are most pronounced in soils with low organic matter concentration.
Effects of biochar on soil fertility, plant growth, and microbial function are affected by several factors, including feedstock, production method, soil, application rate, and biochar age. Biochar has few negative effects on fertility, plant growth and microbial function and in many cases has the potential to greatly improve soil physical, chemical and biological conditions. |
DeLuca et al. (2015) provide an extensive discussion of biochar effects on nutrient cycling, fertility, and microbial function in soil. Their paper is based on an extensive review of the literature at the time of their publication. The following discussion is primarily based on information contained in this document. A list of suggested articles is provided at the end of this section.
Biochars derived from nutrient rich sources such as manure and sludge may directly provide nutrients. Most biochars, however, have limited direct contribution to the nutrient pool with the exception of potassium and ammonium. Biochar may accelerate nutrient cycling over long time scales by serving as a short-term source of highly available nutrients, which become incorporated into living biomass and labile soil organic pools. Thus biochar, while typically providing modest inputs of nutrients, enhances the bioavailability of nutrients in soil.
Because biochar typically enhances soil physical properties, including increasing water holding capacity, improving gas exchange, increasing surface area and availability of microsites for microbes, and in some cases increasing cation exchange capacity, biochar enhances microbial activity in soil. In addition, carbon in biochar provides a sorptive surface that can retain nutrients and thus minimize leaching and volatilization of nutrients.
Several studies suggest biochar amendments in soil result in increased microbial biomass, while other studies show no effect. Mixed results have also been observed for the effects of biochar on microbial community composition.
Specific conclusions from the DeLuca et al. (2015) paper include the following.
Recommended reading
Because of the large number of potential feedstocks, production conditions (primarily temperature), and applications for biochar, biochar classification is an active area of research. The information in this section largely comes from the International Biochar Initiative, but some additional references include the following.
The Internation Biochar Initiative (IBI) developed Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, also referred to The Biochar Standards. These standards provide guidelines and is not a formal set of industry specifications. The goal of The Biochar Standards is to "universally and consistently define what biochar is, and to confirm that a product intended for sale or use as biochar possesses the necessary characteristics for safe use. The IBI Biochar Standards also provide common reporting requirements for biochar that will aid researchers in their ongoing efforts to link specific functions of biochar to its beneficial soil and crop impacts." The IBI also provides a certification program. Information on the standards and certification are found on International Biochar Institute's website or at the IBI's Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil.
The IBI also provides a biochar classification tool. Currently, four biochar properties are classified:
A list of biochar distributors is provided on the United States Biochar Initiative website (USBI). Note the USBI neither provides endorsements nor accepts liability for any particular product or technology listed.
There is no universally accepted standard for biochar testing. The International Biochar Initiative (IBI) developed Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. The goals of this document are to provide "stakeholders and 5 commercial entities with standards to identify certain qualities and characteristics of biochar materials according to relevant, reliable, and measurable characteristics." The document provides information and test parameters and test nethods for three categories.
The IBI document also provides information on sampling procedures, laboratory standards, timing and frequency of testing, feedstcok and production parameters, frequency of testing, reporting, and additional information for specific types of biochar. The document also provides a discussion of H:C ratios, which are used to indicate the stability of a particular biochar.
Biochar undergoes transformations in soil after application, primarily through oxidation processes, typically mediated by microbes. Several researchers have studied effects of aging on biochar properties. Although researchers observe similar changes in the chemical and physical structure of biochar with aging, observed effects vary. It is therefore difficult to draw general conclusions about likely changes in the effects of biochar aging on fate of pollutants and soil hydraulic properties.
Below is a summary of some research findings.
The following guidelines for field application of biochar are presented by Major (2010).
Because biochar is produced from biomass, including wastes, it is sustainable from an availability or supply standpoint. Sustainable biochar production, however, is less certain based on current economic constraints. Biochar has several potential markets and exploiting these markets is necessary for biochar production to be sustainable. Examples of specific markets include stormwater media, soil health and fertility, and carbon sequestration [Biogreen http://www.biogreen-energy.com/biochar-production/] (accessed December 10, 2019). Sustainable biochar production must also meet certain environmental and economic criteria, includign the following.
For more information, see the International Biochar Initiative discussion on sustainable biochar production. For a discussion of biochar sustainability, see sustainability and Certification (Vereijen et al., 2015).