Line 34: | Line 34: | ||
Several recent literature reviews provide an in depth review of street sweeping pollutant removal efficiency (e.g. Center for Watershed Protection 2006, Law et al. 2008, Schilling 2005a). A sampling of monitoring studies and literature reviews that investigated the effectiveness of street sweeping to reduce stormwater nutrient load are summarized below. Many more street sweeping studies are summarized in the literature reviews listed in the references section of this report. | Several recent literature reviews provide an in depth review of street sweeping pollutant removal efficiency (e.g. Center for Watershed Protection 2006, Law et al. 2008, Schilling 2005a). A sampling of monitoring studies and literature reviews that investigated the effectiveness of street sweeping to reduce stormwater nutrient load are summarized below. Many more street sweeping studies are summarized in the literature reviews listed in the references section of this report. | ||
− | *Kalinoski et al. (2012) conducted a 2 year street sweeping study that investigated carbon, nitrogen and phosphorus content in fine, coarse organic, and soluble fractions of street sweeper waste material along street sweeping routes with varying canopy cover and street sweeping frequency in Prior Lake, MN. They found seasonal loads as high as 0.74 pounds per curb-mile of phosphorus and 4.96 pounds per curb-mile of nitrogen can be removed for as little as $28 per pound in targeted sweeping events. They concluded that Optimization of sweeping practices is expected to keep average costs at $40 to $100 per pound | + | *Kalinoski et al. (2012) conducted a 2 year street sweeping study that investigated carbon, nitrogen and phosphorus content in fine, coarse organic, and soluble fractions of street sweeper waste material along street sweeping routes with varying canopy cover and street sweeping frequency in Prior Lake, MN. They found seasonal loads as high as 0.74 pounds per curb-mile of phosphorus and 4.96 pounds per curb-mile of nitrogen can be removed for as little as $28 per pound in targeted sweeping events. They concluded that Optimization of sweeping practices is expected to keep average costs at $40 to $100 per pound. |
− | *Kalinosky et al. (2013) summarizes preliminary results from a 2 year street sweeping study that investigated carbon, nitrogen and phosphorus content in fine, coarse organic, and soluble fractions of street sweeper waste material along street sweeping routes with varying canopy cover and street sweeping frequency in Prior Lake, MN. The researchers state that targeted sweeping appears to be a cost-effective strategy for nutrient reduction when compared to treatment ponds, where costs are generally higher. Sweeping was most cost effective in the spring and fall when targeted sweeping operations achieved costs as low as $18 per pound of P removed and least efficient during mid-summer and mid-winter when costs were often several hundred dollars per pound of phosphorus removed. | + | *Kalinosky *Kalinosky et al. (2013) summarizes preliminary results from a 2 year street sweeping study that investigated carbon, nitrogen and phosphorus content in fine, coarse organic, and soluble fractions of street sweeper waste material along street sweeping routes with varying canopy cover and street sweeping frequency in Prior Lake, MN. The researchers state that targeted sweeping appears to be a cost-effective strategy for nutrient reduction when compared to treatment ponds, where costs are generally higher. Sweeping was most cost effective in the spring and fall when targeted sweeping operations achieved costs as low as $18 per pound of P removed and least efficient during mid-summer and mid-winter when costs were often several hundred dollars per pound of phosphorus removed. |
*Law et al. (2008) published a report based on a literature review, a survey of street sweeping and storm drain cleanout practices in the Chesapeake Bay and data generated from monitoring. The authors found street sweeping to generally have very low P removal efficiency and concluded “Despite the high pick up efficiencies of newer street sweeping technologies such as regenerative air or vacuum assist street sweepers, current monitoring protocols are challenged to detect significant differences in sediment and nutrient pollutant loading reductions that may be achieved from street sweeping. Additional pollutant contributions from areas other than public streets and roadways provide additional pollutant loadings that are unaffected by street sweeping, thus reducing the effectiveness of this practice. | *Law et al. (2008) published a report based on a literature review, a survey of street sweeping and storm drain cleanout practices in the Chesapeake Bay and data generated from monitoring. The authors found street sweeping to generally have very low P removal efficiency and concluded “Despite the high pick up efficiencies of newer street sweeping technologies such as regenerative air or vacuum assist street sweepers, current monitoring protocols are challenged to detect significant differences in sediment and nutrient pollutant loading reductions that may be achieved from street sweeping. Additional pollutant contributions from areas other than public streets and roadways provide additional pollutant loadings that are unaffected by street sweeping, thus reducing the effectiveness of this practice. | ||
While it is known that tree leaves, seeds, and flowers that fall on impervious surfaces contain phosphorus (P), and some of that P leaches out and contributes to the nutrient load in urban runoff, the proportion of Pin urban runoff that comes from trees varies greatly and is unclear. Hobbie(2013, personal communication) estimated from data collected in subwatersheds of the Twin Cities that the amount of P in leaf litter on streets is equal to about 40 to 60 percent of the amount of P that is exported in runoff during the warm season (May through September). The value depends on effectiveness of street sweeping. However, Hobbie et al (2013) have found that leaf litter sometimes immobilizes P. This means that if it was possible to time sweeping to occur after leaf litter had immobilized P, leaf litter could actually decrease total P load in runoff if it was swept at the right time.
The relationship between leaf litter and phosphorus in stormwater is complex and dynamic. Below is a summary of some findings from research conducted on the topic.
The researchers concluded “… our results indicated significant differences between nutrient dynamics in the street and in the laboratory leaching study. Litter of some species that exhibited substantial leaching losses of N and especially P in the laboratory did not exhibit such losses in the street, likely because of dry conditions during the first 3.5 weeks of deployment... In fact, some species that lost substantial P in the laboratory study exhibited a period of increase in P mass in the street. Notably some litter types still retained a high proportion of their initial P 1 year after the litter bags were deployed in the street even though they exhibited substantial P losses initially or after an early period of immobilization (e.g. Quercus bicolor, Acer platanoides). These results suggest that there is a high capacity for leaf litter decomposing in the street to immobilize P from the environment, likely as microbes take up P to meet nutritional demands for breaking down and using the organic matter as an energy source. Leaf litter P mass, and to a lesser degree N mass, were dynamic—increasing and decreasing throughout the study period—although the causes and timing of these dynamics are unclear. The dynamics did not relate to precipitation patterns, as changes in N or P (either in total mass or concentration) between any two harvests were not correlated with either the cumulative, daily mean, or daily maximum precipitation during that period, regardless of whether the time during which precipitation fell as snow was included in the analysis (analyses not shown). Thus, leaching losses triggered by rain events appear to have been offset by P immobilization into litter by decomposers between rain events. … “careful selection of street tree species and timely removal of litterfall have significant potential to reduce nutrient fluxes from streets to storm drains, particularly for P.”
There are three general categories of street sweepers: mechanical broom, regenerative air, and high-efficiency sweepers. Schilling (2005a) provides a description of these practices (see pages 5 through 9 of the report) as well as a discussion of general cost range and concise lists for the advantages and disadvantages of each of these types of sweeper. Appendix A of the report by Schilling also lists sweeper manufacturers, available models, and common specifications for street sweepers.
Since the 1970’s, many studies have investigated the effectiveness of street sweeping to reduce stormwater nutrient load, but results of those studies vary widely. Moreover, most studies investigating effectiveness of street sweeping to reduce stormwater nutrient loads from trees do not directly measure effects of street sweeping by monitoring P concentration in runoff before and after sweeping. Based on the results of Hobbie et al (2013), studying P in urban runoff before and after street sweeping would more accurately indicate how much P is removed from the total P in runoff through street sweeping.
Several recent literature reviews provide an in depth review of street sweeping pollutant removal efficiency (e.g. Center for Watershed Protection 2006, Law et al. 2008, Schilling 2005a). A sampling of monitoring studies and literature reviews that investigated the effectiveness of street sweeping to reduce stormwater nutrient load are summarized below. Many more street sweeping studies are summarized in the literature reviews listed in the references section of this report.
Similar conclusions have been made by other researchers conducting street sweeping studies where there are many sources of variability in such field-based studies that make any potential impact from street sweeping undetectable (e.g., Selbig and Bannerman 2007).
The authors presented several additional conclusions.
sweeping, the percent removal will be low. The National Urban Runoff Program(e.g. Bannerman et al. 1984) suggests that, on average, streets need to have 1,000 lbs/curb mile of SPaM [Street particulate matter] for sweepers to effectively reduce the SPaM loading.
represents monthly street sweeping by a mechanical street sweeper, while the upper end characterizes the pollutant removal efficiencies using regenerative air/vacuum street sweeper at weekly frequencies.”
The authors proposed total phosphorus removal efficiencies for street sweeping:
Generally spring and fall are the most cost effective times of the year to sweep streets. Exact recommended sweeping frequency varies depending on the canopy cover and other factors.
Kalinosky et al (2013a) are developing a guidance manual and workshopseries on street sweeping best practices, as well as a spreadsheet calculatortool “for predictingsediment and nutrient loads to street surfaces in urban areas based on overheadtree canopy; estimating the amount of material that can be removed and the costof removal in targeted sweeping operations; and designing sweeping programs tomeet nutrient reduction goals.” While they are not yet available at this time,these tools are expected to be available soon Kalinosky2013).
Inputs into the calculator will include:
Based on those simple inputs, the tool will estimatenutrient recovery and cost per pound of P removed (Kalinosky et al 2013b).
on line September 6, 2013.
from: Bill Stack, Steve Stewart,Ken Belt, Rich Pouyat, and Clair Welty. 2008.Deriving Reliable Pollutant Removal Rates for Municipal Street Sweeping andStorm Drain Cleanout Programs in the Chesapeake Bay Basin. Prepared by theCenter for Watershed Protection as fulfillment of the U.S. EPA Chesapeake BayProgram grant CB-973222-01.
Minnesota. June 2005.