m |
m |
||
Line 134: | Line 134: | ||
*Description: The fraction of the treated water that is infiltrated by the BMP. Defaults are 100 percent for all infiltration BMPs and 0 percent for the rest. All of the water captured by an infiltration BMP is assumed to infiltrate into the soil underlying the BMP. The assumption that no water infiltrates in the remaining BMPs is a conservative assumption, since some water always infiltrates through the bottom unless the BMP is lined. The [[MIDS calculator]] can be used to estimate volume loss in BMPs with an underdrain. Typical infiltration in a BMP with an underdrain and an underlying D soil will be about 20 percent (0.20). | *Description: The fraction of the treated water that is infiltrated by the BMP. Defaults are 100 percent for all infiltration BMPs and 0 percent for the rest. All of the water captured by an infiltration BMP is assumed to infiltrate into the soil underlying the BMP. The assumption that no water infiltrates in the remaining BMPs is a conservative assumption, since some water always infiltrates through the bottom unless the BMP is lined. The [[MIDS calculator]] can be used to estimate volume loss in BMPs with an underdrain. Typical infiltration in a BMP with an underdrain and an underlying D soil will be about 20 percent (0.20). | ||
*Input: None or User input | *Input: None or User input | ||
− | *Source of Information: MPCA Input, but User can change the value. | + | *Source of Information: MPCA Input, but User can change the value in the ''Input values for MPCA estimator'' tab. |
'''Rows 38, 59, 80, and 101''' | '''Rows 38, 59, 80, and 101''' |
This User Guide is intended to assist Municipal Separate Storm Sewer System (MS4) Permittees in the completion of the Commissioner-approved TMDL Annual Reporting Form (TMDL Form).
The MPCA Stormwater Program will hold a workshop on the MPCA Estimator on June 17th, 2015 from 8:30a to noon at Blaine City Hall.
To participate in this workshop you will need to:
• Download the Estimator to a laptop that you will be bringing to the workshop. We strongly recommend you review either the quick guide or full guidance for using the Estimator prior to the workshop.
• This will be a hands-on workshop where you work directly with the Estimator. If you intend on using your BMP information at the workshop, inventory your structural BMPs (swales/strips, constructed basins, infiltrators, and filters) and the discharge areas they treat and bring that information to the workshop. If you do not bring your BMP information, example information will be provided.
Please RSVP to Mary Hammes by June 1st if you plan on attending.
Download MPCA Estimator here: File:MPCA Estimator.xlsx
A quick guide for the estimator is available Quick Guide: MPCA Estimator tab.
The MPCA estimator worksheet presents an optional calculator approach to computing the pollutant load reduction for four pollutants: Total phosphorus, Total Suspended Solids (TSS), E. coli, and fecal coliform (note: the estimator may not be used for any other pollutants). Results from the estimator can be used in the Cumulative reductions tab. The estimator applies only to specific structural BMPs and is a simplistic tool that provides rough estimates of loading and load reductions. It should not be used for modeling a stormwater system or selecting BMPs. The following color coding applies to this worksheet.
The estimator utilizes the Simple Method to estimate land use based pollutant loads for total phosphorus, total suspended solids (TSS), and total bacteria (Schueler, 1987). BMPs included in the estimator are biofiltration (bioretention with an underdrain), bioinfiltration (bioretention with no underdrain), filter strip, landscaped roof (green roof), permeable pavement with an underdrain, sand filter, swale, wet basin, and constructed wetland. Users may include other BMPs if they have reliable data on pollutant removal efficiency.
The estimator will compute pollutant reduction using BMP performance data as published in the 2012 International BMP Database. The database compiles Event Mean Concentration (EMC) performance data and reports in terms of 25th Percentile, Median, and 75th Percentile. The estimator computes the load reduction according to the formula
This is then converted to a percentage reduction
The cumulative reduction is the sum of load reduced for all BMPs. This computed reduction can be input into the Cumulative reductions tab of the TMDL form.
The Estimator can only be used for one TMDL at a time. If a Permittee has multiple TMDLs and chooses to use the Estimator, separate calculations must be made for each TMDL.
The MPCA Estimator is divided into five sections.
Download MPCA Estimator here: File:MPCA Estimator.xlsx
Column A - Land use
Columns B through E, Rows 6 through 17 - Event mean concentrations
Column F, Rows 6 through 17 - Area of specified land use
Column G, Rows 6 through 17 - Annual precipitation
Note: The default value is 30.65 inches per year, which is the average annual precipitation at the Minneapolis-St. Paul International airport. The User should input the appropriate value for their location. The references below can be used to determine this value.
Column H, Rows 6 through 17 - runoff coefficients
Columns I through L, Rows 6 through 18 - Pollutant loads
This part of the worksheet is comprised of four sections corresponding with calculations for phosphorus, TSS, coliform bacteria, and E. coli bacteria. The User inputs areas being treated by a particular BMP within a specific land use. Total pounds or bacteria reduced and percent reductions from the estimated load are generated based on the pollution reduction efficiency of the BMP.
Rows 23 through 34, 44 through 55, 65 through 76, and 86 through 97
Rows 35, 56, 77, and 98
Rows 36, 57, 78, and 99
Daily precipitation vs annual runoff MSP airport
Rows 37, 58, 79, and 100
Rows 38, 59, 80, and 101
Rows 39, 60, 81, and 102
Download MPCA Estimator here: File:MPCA Estimator.xlsx
Example calculations were made for reductions in pollutant loading for the map shown to the left. There are 4 MS4s (City A, City B, City C, and the MS4 College) and 4 impaired waters (Lake 1, Lake 2, Lake 3, and Stream 1). The lakes are impaired for phosphorus and the stream is impaired for TSS and E. coli bacteria. Below is a summary of MS4 contributions to each impaired water.
City A comprises 585 acres within the Lake 1 watershed. The breakdown by specific land use is shown in the summary table above. The City has implemented 5 BMPs within the watershed that can be included in the MPCA Estimator.
Using the defaults in the worksheet, reductions in phosphorus loading are shown in Rows 37 (total pounds reduced) and 38 (Percent load reduced). The total load reduction for all BMPs is 5.875 pounds, or about 1.00 percent of the original loading of 586.45 pounds. The User can enter either the pounds reduced (5.875) or the percent reduced (1.00) in the Cumulative reductions tab.
The estimator only allows the user to estimate loads for one impaired water at a time. The User should either save the worksheet as a separate Excel file, keep a record of the inputs used for this impairment, or insert additional estimator worksheets into the spreadsheet. To create additional estimator worksheets within the spreadsheet, on the Home tab in Excel, click on Insert and select Insert Sheet. Then Copy the contents of the MPCA estimator tab into the new worksheet. Tabs within the spreadsheet can be renamed by double clicking on the tab at the bottom of the screen and then typing in a new name. See the image to the left and Excel Help for more information.
A new version of the estimator is run for the Lake 2 watershed. City A comprises 84 acres of this watershed and has implemented just one BMP that can be used in the estimator. This is a bioinfiltration BMP that drains 2 acres of medium density residential area. this is an infiltration BMP, so the User enters 2 in row 30, Column C (Infiltration (BMP with no underdrain), Residential - medium density). this BMP results in a reduction of 2.004 pounds of phosphorus, or 2.46 percent of the original load of 81.33 pounds.
City A may conduct additional BMPs that decrease pollutant load. If these BMPs can be quantified, they can be entered as Other BMPs in the worksheet.
City C comprises 297 acres of the Lake 2 watershed. The City has implemented one BMP that can be used in the estimator. This is a dry pond that drains 8 acres of medium density residential land use. The User enters 8 in Row 30, Column I (Wet basin, Residential - medium density). The resulting decrease in phosphorus loading is 4.453 pounds or 1.39 percent of the initial load of 319.67 pounds. This example again utilizes the default values in the worksheet.
As with City A, the estimator can only be used for one impaired water at a time. The User must therefore run the estimator separately for Lake 3 and Stream 1.
City C comprises 366 acres of the Lake 3 watershed. The City has implemented two BMPs, an underground sand filter that serves 5 acres of medium density residential land use, and a 12 acre dry swale that serves 10 acres of commercial development and 2 acres of transportation. The User enters 5 in Row 30, Column G (Sand filter, residential - medium density), 10 in Row 22 Column H (Swale, Commercial), and 2 in Row 31, Column H (Swale, Transportation). The resulting total decrease in phosphorus load is 9.087 pounds or 2.24 percent of the total load of 405.62 pounds.
City C comprises 427 acres of the Stream 1 watershed (127 acres in the Oasis Lake watershed and 300 acres in the Lake 3 watershed). The City has implemented a dry swale that drains 10 acres of commercial land and 2 acres of transportation land use, and a tree trench that drains 8 acres of commercial land and 7 acres of industrial land. For the tree trench, the user enters 8 in Row 22, Column C (Commercial; Infiltration) and 7 in Row 23, Column C (industrial; infiltration). For the dry swale the User enters 10 in Row 22, Column H (Commercial; Swale) and 2 in Row 31, Column H (transportation; Swale). The resulting decrease in TSS load is 21,885.4 pounds or 9.78 percent of the initial load of 223,855 pounds. The decrease in E. coli load is 3.12 percent of the initial load. Note the swale does not reduce any of the E. coli load.
Lake 2.
Lake 3.
Stream 1; TSS
Stream 1; E coli
The MS4 College is a non-traditional regulated MS4. The area of the college is 84 acres and the college owns and operates the stormwater conveyance within the campus boundaries. The entire acreage of the college lies within the Lake 1 watershed. Land use within the campus consists of 15 acres of park and 69 acres of institutional land use.
The college has constructed and operates one BMP (FIL1). The BMP is a perimeter sand filter that accepts runoff from a 3 acre area. The land use contributing runoff to the BMP is institutional. The User therefore enters 3 in row 24, Column G of the estimator (Sand filter, Institutional). The BMP decreases phosphorus loading by 1.391 pounds, or 1.77 percent from the initial load of 78.75 pounds.
Results of the MPCA estimator can be entered into the Cumulative reductions tab. This is illustrated in the image to the right for City A. In this example, for Lake 1 a value of 5.875 is entered into Row 4, Column F. In Column D the units are selected from the dropdown box, In this case the units are pounds reduced. For Lake 2 a value of 2.46 is entered in row 5, column F and the units are % load reduction. The calculation method, which is an optional field, is entered as MPCA estimator.