m
m
Line 9: Line 9:
  
 
===Nitrogen===
 
===Nitrogen===
{| class="wikitable" style="float:right; margin-left: 10px; width:100px;"
+
{| class="wikitable" style="float:right; margin-left: 10px; width:200px;"
 
|-  
 
|-  
 
| colspan="2" style="text-align: center;" | '''Summary of characteristics of nitrogen. Sources:Pitt et al., 1994, 1999; Weiss et al., 2008; ATSDR, 2011.<br>
 
| colspan="2" style="text-align: center;" | '''Summary of characteristics of nitrogen. Sources:Pitt et al., 1994, 1999; Weiss et al., 2008; ATSDR, 2011.<br>
Line 41: Line 41:
  
 
In regards to the toxicity of nitrogen, ammonia and nitrate are two forms of particular concern. As ammonia undergoes nitrification, it uses large amounts of oxygen. This in turn can kill fish and other aquatic wildlife. When nitrate contaminates drinking water at high levels, it can lead to the phenomenon known as “blue baby syndrome” which affects babies less than 6 months old (Prey et al., 2000). Nitrates and nitrites have not been classified as carcinogenic, however a metabolic pathway exists that lead to formation of N-nitroso compounds, some of which are carcinogenic. (ATSDR, 2011). Areas at risk for contamination of shallow groundwater due to nitrogen are shown in Figure 1.4.
 
In regards to the toxicity of nitrogen, ammonia and nitrate are two forms of particular concern. As ammonia undergoes nitrification, it uses large amounts of oxygen. This in turn can kill fish and other aquatic wildlife. When nitrate contaminates drinking water at high levels, it can lead to the phenomenon known as “blue baby syndrome” which affects babies less than 6 months old (Prey et al., 2000). Nitrates and nitrites have not been classified as carcinogenic, however a metabolic pathway exists that lead to formation of N-nitroso compounds, some of which are carcinogenic. (ATSDR, 2011). Areas at risk for contamination of shallow groundwater due to nitrogen are shown in Figure 1.4.
 +
 +
===Chloride===

Revision as of 13:24, 15 May 2015

As stormwater travels across the land surface into infiltration BMPs, it can pick up various pollutants and deliver them to the subsurface. The fate and transport of these pollutants into soil, the vadose zone and ultimately groundwater depends on the type and amount of pollutant present, the volume of infiltration, the type of infiltration BMP, and subsurface conditions.

Typical stormwater pollutants

Common stormwater pollutants and their most important sources are described in the first table below. The second table provides typical pollutant concentrations in stormwater runoff. The concentrations are based on data from the International Stormwater Database.

Common pollutants of concern and sources in stormwater runoff. Adapted from USGS, 2014.
Link to this table.

Contaminant Contaminant source1
Nitrogen Naturally occurring from vegetation decomposition. Anthropogenic sources include fertilizers, farm-animal waste, faulty septic systems
Chloride Salts applied to roads and parking lots during the winter. Natural sources include mineral dissolution
Copper Industrial and domestic waste, mining, mineral leaching, automobile parts and fluids
Zinc Industrial waste; automobile parts and fluids
Manganese Found naturally in sediment and rocks. Anthropogenic sources include mining waste, industrial waste, automobile parts and fluids
Nickel Naturally occurring. Anthropogenic sources include stainless steel and alloy products, mining, refining, automobile parts and fluids
Cadmium Small amounts are naturally occurring. Anthropogenic sources include industrial discharge, mining waste, automobile parts and fluids
Chromium Old mining operations; fossil-fuel combustion; mineral leaching; automobile parts and fluids
Pesticides Residential use of lawn care products; commercial landscaping; animal wastes; municipal right-of-ways; agriculture; feedlots
Cyanide Road salt; fertilizer production
PAHs2 Auto emissions; elicit discharges; asphalt pavement (driveways, roadways and parking lots) with coal tar sealants3
VOCs2 Crude oil; insecticides; varnishes; paints; gasoline products; degreasers; municipal maintenance activities
Oil and grease Gasoline products; plastics; dyes; rubbers; polishes; solvents; crude oil; insecticides; inks; varnishes; paints; disinfectants; paint removers; degreasers; automobile fluids
Microbes (including fecal coliform, E. coli, and pathogens) Domestic sewage; animal waste; plant or soil material

1The list of sources is for stormwater runoff only
2PAHs=polyaromatic hydrocarbons; VOCs=volatile organic compounds
3MPCA, 2014 Source: USGS, 2014, with permission


Concentrations of contaminants found in stormwater. Source: International Stormwater Database7. Because the data below are from a single source, values may differ from those contained on this page. We recommend if you are using emcs to quantify pollutant loading, you use this data instead of data from this table. Note that the table does not include information for chloride, a common pollutant in stormwater. Chloride concentrations vary seasonally and would be misrepresented in a single table. For more information on chloride concentrations in stormwater, see here.
Link to this table.

Land use TSS 1 NO2 + NO3 1 TN 1 TP 1 Cu 2 Zn 2 Ni 2 Cd 2 Cr 2 CN 2,5 Oil and grease 2 VOCs 2,5 Pesticides 2,4,5 FC 3,5 EC 3,5 FS 3,5
Commercial
Number of sites 56 50 13 56 60 62 40 51 38 2 44 4 1 4 -- 3
Number of observations 857 786 77 948 785 867 291 543 294 6 394 160 6 19 -- 7
% of samples above detection 98.7 98.9 97.4 94.5 85 99.2 51.5 38.1 52.0 0 65.5 65.5 0 73.7 -- 100
Minimum <0.5 <0.1 <1.5 <0.01 <0.2 <0.3 <1 <0.03 <0.7 n/a <0.5 <0.05 n/a <200 -- 310
Maximum 2385 8.2 18.1 4.27 569.1 3050.5 110 80 100 n/a 359 n/a 28000 -- 24000
Median 52 0.6 1.75 0.2 17 110 8 BDL6 4 BDL 5 0.7 n/a 450 -- 3100
Industrial
Number of sites 58 51 13 57 65 67 43 60 42 2 48 3 -- 6 -- 4
Number of observations 619 536 85 638 569 627 300 525 312 9 370 144 -- 32 -- 12
% samples above detection 99.5 97.0 95.3 95.1 85.1 98.9 58.0 48.6 72.4 0 59.7 10.4 -- 90.6 -- 91.7
Minimum <1 <0.02 <1.5 <0.02 <0.2 <0.5 <2 <0.03 <0.7 n/a <0.5 <0.05 -- <1 -- <1
Maximum 2490 8.4 15.2 7.9 1360 8100 120 334 150 n/a 408 -- 3600000 -- 48000
Median 75 0.68 1.7 0.23 19 155 10 BDL 10 BDL 5 BDL -- 3950 -- 24000
Residential
Number of sites 146 127 20 148 147 151 77 114 72 -- 95 7 1 10 3 4
Number of observations 2257 1772 131 2380 1743 2013 418 1123 408 -- 694 210 6 94 19 23
% of sample above detection 99.9 99.0 98.5 98.2 86.5 97.0 42.2 40.4 48.8 -- 56.8 20.1 0 85.9 100 95.7
Minimum <0.5 <0.03 <1.5 <0.01 <0.2 <0.5 <0.5 <0.03 <0.7 -- <0.5 <0.05 n/a <1 10 <1
Maximum 4168 66.4 18.3 19.90 590 14700 100 70 70 -- 419 3.42 n/a 5230000 35000 200000
Median 58 0.60 2.24 0.26 11 69.9 5 BDL 3 -- 4 BDL BDL 9400 1000 23500
Open space
Number of sites 15 13 4 15 12 12 9 8 7 3 9 1 -- 2 1 --
Number of observations 105 109 13 111 44 49 38 41 36 13 26 5 -- 6 5 --
% of samples above detection 97.1 92.7 92.3 93.7 64.4 65.3 23.1 39.0 36.1 15.4 34.6 60.0 -- 100 100 --
Minimum <1 <0.1 <0.5 <0.01 <0.8 <5 <2 <0.04 <0.7 <0.01 <1 <0.2 -- 1900 100 --
Maximum 4168 3.4 3.3 0.76 210 390 100 8 120 0.08 11 0.84 -- 63000 4700 --
Median 58 0.5 1.1 0.129 6 25 BDL BDL BDL BDL BDL 0.77 -- 2150 1100 --
Rooftop Water quality from rooftops varies with the type of roof. For more information see the section on Water quality considerations for stormwater and rainwater harvest and use/reuse

TSS=total suspended solids, NO2=nitrite, NO3=nitrate, TN=total nitrogen, Cl=chloride, Cu=copper, Zn=zinc, Ni=nickel, Cd=cadmium, Cr=chromium, CN=cyanide, VOC=volatile organic compound, FC=fecal coliform, EC=E. coli, FS=fecal streptococci
1 Concentrations are in milligrams per liter
2 Concentrations are in micrograms per liter
3 Concentrations are in Number per 100 milliliters
4Data is for trans-1,3-Dichloropropene and bromomethane
5 Data was selected from states with a similar climate to MN. The appropriate states were determined using Figure 1.3 from the Stormwater BMP Design Supplement for Cold Climates document.
6BDL = below detection level
7The following censoring techniques were used for this data:

  • If detection rates were 90% or greater, a value of "0" was substituted for non-detects.
  • If detection rates were greater than 50% but 90% or less, a value of 1/2 the detection limit was substituted for non-detects.
  • If detection rates were 50% or less, the median was assumed to be below the method detection level.


Nitrogen

Summary of characteristics of nitrogen. Sources:Pitt et al., 1994, 1999; Weiss et al., 2008; ATSDR, 2011.
Mobility Mobile
Solubility High
Abundance in stormwater Low/moderate
Toxicity Variable. Toxicity depends on type of nitrogen present.
Degradation potential High
Adsorption/absorption Low
Plant uptake High
Potential transport to groundwater

Nitrogen can be found in many forms in the stormwater runoff/infiltrating water, with the most common forms being ammonia, nitrate, and nitrite. Nitrate is estimated to be the most common nonpoint-source groundwater contaminant in the world (Gurdak & Qi, 2012). Despite its high solubility, nitrite is detected with much less frequency than nitrate because nitrite oxidizes rapidly to form nitrate. Total nitrogen (TN) was detected in approximately 97 percent of the 4,077 samples submitted to the International Stormwater Database and included in Table 1.2, nitrate was detected in 100 percent of 12 samples, and nitrite was detected in 83 percent of 6 samples.

In regards to the toxicity of nitrogen, ammonia and nitrate are two forms of particular concern. As ammonia undergoes nitrification, it uses large amounts of oxygen. This in turn can kill fish and other aquatic wildlife. When nitrate contaminates drinking water at high levels, it can lead to the phenomenon known as “blue baby syndrome” which affects babies less than 6 months old (Prey et al., 2000). Nitrates and nitrites have not been classified as carcinogenic, however a metabolic pathway exists that lead to formation of N-nitroso compounds, some of which are carcinogenic. (ATSDR, 2011). Areas at risk for contamination of shallow groundwater due to nitrogen are shown in Figure 1.4.

Chloride