Line 23: | Line 23: | ||
**'''Surface area of Engineered media (including pore spaces)(VM):''' The average surface area of the engineered media below the storage device. This value is used to calculate the volume of water that is stored in the engineered media. The user enters this value in square ft. | **'''Surface area of Engineered media (including pore spaces)(VM):''' The average surface area of the engineered media below the storage device. This value is used to calculate the volume of water that is stored in the engineered media. The user enters this value in square ft. | ||
− | **Depth of media (DM): The depth of the engineered media below the storage device. This value is used to calculate the volume of water stored in the engineered soils. The user enters this value in ft. | + | **'''Depth of media (DM):''' The depth of the engineered media below the storage device. This value is used to calculate the volume of water stored in the engineered soils. The user enters this value in ft. |
− | **'''Media porosity (n):''' This is the ratio of pore space in the engineered media to the total volume of the engineered media. Units are volume/volume (e.g., cubic centimeters per cubic centimeter). If various types of media are used in the BMP, this value should be an average of the media installed between the underdrain and the native soils. Values for porosity based on soil type can be found here. Typical values range between 0.35 and 0.5 ft3/ft3. | + | **'''Media porosity (n):''' This is the ratio of pore space in the engineered media to the total volume of the engineered media. Units are volume/volume (e.g., cubic centimeters per cubic centimeter). If various types of media are used in the BMP, this value should be an average of the media installed between the underdrain and the native soils. Values for porosity based on soil type can be found [http://stormwater.pca.state.mn.us/index.php/Soil_water_storage_properties here]. Typical values range between 0.35 and 0.5 ft3/ft3. |
**Underlying soil - Hydrologic Soil Group: The user selects the most restrictive soil (lowest hydraulic conductivity) within three feet of the soil/media interface in the infiltration basin. There are 14 soil options that fall into 4 different Hydrologic Soil Groups (Hydrologic Soil Group (HSG) A, B, C, or D) for the user. These correspond with soils and infiltration rates contained in this Manual. Once a soil type is selected, the corresponding infiltration rate will populate in the “Infiltration rate of underlying soils” field. The user may also select “User Defined.” This selection will activate the “User Defined Infiltration Rate” cell allowing the user to enter a different value from the values in the predefined selection list. The maximum allowable infiltration rate is 1.63 inches per hour. | **Underlying soil - Hydrologic Soil Group: The user selects the most restrictive soil (lowest hydraulic conductivity) within three feet of the soil/media interface in the infiltration basin. There are 14 soil options that fall into 4 different Hydrologic Soil Groups (Hydrologic Soil Group (HSG) A, B, C, or D) for the user. These correspond with soils and infiltration rates contained in this Manual. Once a soil type is selected, the corresponding infiltration rate will populate in the “Infiltration rate of underlying soils” field. The user may also select “User Defined.” This selection will activate the “User Defined Infiltration Rate” cell allowing the user to enter a different value from the values in the predefined selection list. The maximum allowable infiltration rate is 1.63 inches per hour. | ||
**'''Required drawdown time (hrs):''' This is the time in which the stormwater captured by the BMP must drain into the underlying soil/media. The user selects from predefined values of 48 or 24 hours. The MPCA Construction Stormwater General Permit requires drawdown within 48 hours, but 24 hours is Highly Recommended when discharges are to a trout stream. The calculator uses the underlying soil infiltration rate and the overflow depth to check if the BMP is meeting the drawdown time requirement. The user will encounter an error and be required to enter a new “Overflow depth” if the stormwwater stored in the BMP cannot drawdown in the required time. | **'''Required drawdown time (hrs):''' This is the time in which the stormwater captured by the BMP must drain into the underlying soil/media. The user selects from predefined values of 48 or 24 hours. The MPCA Construction Stormwater General Permit requires drawdown within 48 hours, but 24 hours is Highly Recommended when discharges are to a trout stream. The calculator uses the underlying soil infiltration rate and the overflow depth to check if the BMP is meeting the drawdown time requirement. The user will encounter an error and be required to enter a new “Overflow depth” if the stormwwater stored in the BMP cannot drawdown in the required time. |
For an underground infiltration system, all stormwater captured in the underground pipe/storage device or in the underlying engineered media by the BMP is infiltrated into the underlying soil between rain events. All pollutants in the infiltrated water are credited as being reduced. Pollutants in the stormwater that bypasses the BMP are not reduced.
For underground infiltration systems, the user must input the following parameters to calculate the volume and pollutant load reductions associated with the BMP.
The following are requirements or recommendations for inputs into the MIDS calculator. If the following are not met, an error message will inform the user to change the input to meet the requirement.
“Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP, plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously following the Kerplunk method.
The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP” is calculated using BMP inputs provided by the user. For this BMP the volume reduction credit is equal to the amount of water that can be instantaneously captured by the BMP in the storage device and in the engineered media below the underdrain. The capture volume (V) is therefore equal to the following\[ V= V_P+[A_M*n*D_M ] \]