This site is currently undergoing revision. For more information, open this link.
This site is under construction. Anticipated completion date is May, 2015.

As stormwater travels across the land surface into infiltration BMPs, it can pick up various pollutants and deliver them to the subsurface. The fate and transport of these pollutants into soil, the vadose zone and ultimately groundwater depends on the type and amount of pollutant present, the volume of infiltration, the type of infiltration BMP, and subsurface conditions.

Typical stormwater pollutants

Common stormwater pollutants and their most important sources are described in the first table below. The second table provides typical pollutant concentrations in stormwater runoff. The concentrations are based on data from the International Stormwater Database.

Common pollutants of concern and sources in stormwater runoff. Adapted from USGS, 2014.
Link to this table.

Contaminant Contaminant source1
Nitrogen Naturally occurring from vegetation decomposition. Anthropogenic sources include fertilizers, farm-animal waste, faulty septic systems
Chloride Salts applied to roads and parking lots during the winter. Natural sources include mineral dissolution
Copper Industrial and domestic waste, mining, mineral leaching, automobile parts and fluids
Zinc Industrial waste; automobile parts and fluids
Manganese Found naturally in sediment and rocks. Anthropogenic sources include mining waste, industrial waste, automobile parts and fluids
Nickel Naturally occurring. Anthropogenic sources include stainless steel and alloy products, mining, refining, automobile parts and fluids
Cadmium Small amounts are naturally occurring. Anthropogenic sources include industrial discharge, mining waste, automobile parts and fluids
Chromium Old mining operations; fossil-fuel combustion; mineral leaching; automobile parts and fluids
Pesticides Residential use of lawn care products; commercial landscaping; animal wastes; municipal right-of-ways; agriculture; feedlots
Cyanide Road salt; fertilizer production
PAHs2 Auto emissions; elicit discharges; asphalt pavement (driveways, roadways and parking lots) with coal tar sealants3
VOCs2 Crude oil; insecticides; varnishes; paints; gasoline products; degreasers; municipal maintenance activities
Oil and grease Gasoline products; plastics; dyes; rubbers; polishes; solvents; crude oil; insecticides; inks; varnishes; paints; disinfectants; paint removers; degreasers; automobile fluids
Microbes (including fecal coliform, E. coli, and pathogens) Domestic sewage; animal waste; plant or soil material

1The list of sources is for stormwater runoff only
2PAHs=polyaromatic hydrocarbons; VOCs=volatile organic compounds
3MPCA, 2014 Source: USGS, 2014, with permission


Concentrations of contaminants found in stormwater. Source: International Stormwater Database7. Because the data below are from a single source, values may differ from those contained on this page. We recommend if you are using emcs to quantify pollutant loading, you use this data instead of data from this table. Note that the table does not include information for chloride, a common pollutant in stormwater. Chloride concentrations vary seasonally and would be misrepresented in a single table. For more information on chloride concentrations in stormwater, see here.
Link to this table.

Land use TSS 1 NO2 + NO3 1 TN 1 TP 1 Cu 2 Zn 2 Ni 2 Cd 2 Cr 2 CN 2,5 Oil and grease 2 VOCs 2,5 Pesticides 2,4,5 FC 3,5 EC 3,5 FS 3,5
Commercial
Number of sites 56 50 13 56 60 62 40 51 38 2 44 4 1 4 -- 3
Number of observations 857 786 77 948 785 867 291 543 294 6 394 160 6 19 -- 7
% of samples above detection 98.7 98.9 97.4 94.5 85 99.2 51.5 38.1 52.0 0 65.5 65.5 0 73.7 -- 100
Minimum <0.5 <0.1 <1.5 <0.01 <0.2 <0.3 <1 <0.03 <0.7 n/a <0.5 <0.05 n/a <200 -- 310
Maximum 2385 8.2 18.1 4.27 569.1 3050.5 110 80 100 n/a 359 n/a 28000 -- 24000
Median 52 0.6 1.75 0.2 17 110 8 BDL6 4 BDL 5 0.7 n/a 450 -- 3100
Industrial
Number of sites 58 51 13 57 65 67 43 60 42 2 48 3 -- 6 -- 4
Number of observations 619 536 85 638 569 627 300 525 312 9 370 144 -- 32 -- 12
% samples above detection 99.5 97.0 95.3 95.1 85.1 98.9 58.0 48.6 72.4 0 59.7 10.4 -- 90.6 -- 91.7
Minimum <1 <0.02 <1.5 <0.02 <0.2 <0.5 <2 <0.03 <0.7 n/a <0.5 <0.05 -- <1 -- <1
Maximum 2490 8.4 15.2 7.9 1360 8100 120 334 150 n/a 408 -- 3600000 -- 48000
Median 75 0.68 1.7 0.23 19 155 10 BDL 10 BDL 5 BDL -- 3950 -- 24000
Residential
Number of sites 146 127 20 148 147 151 77 114 72 -- 95 7 1 10 3 4
Number of observations 2257 1772 131 2380 1743 2013 418 1123 408 -- 694 210 6 94 19 23
% of sample above detection 99.9 99.0 98.5 98.2 86.5 97.0 42.2 40.4 48.8 -- 56.8 20.1 0 85.9 100 95.7
Minimum <0.5 <0.03 <1.5 <0.01 <0.2 <0.5 <0.5 <0.03 <0.7 -- <0.5 <0.05 n/a <1 10 <1
Maximum 4168 66.4 18.3 19.90 590 14700 100 70 70 -- 419 3.42 n/a 5230000 35000 200000
Median 58 0.60 2.24 0.26 11 69.9 5 BDL 3 -- 4 BDL BDL 9400 1000 23500
Open space
Number of sites 15 13 4 15 12 12 9 8 7 3 9 1 -- 2 1 --
Number of observations 105 109 13 111 44 49 38 41 36 13 26 5 -- 6 5 --
% of samples above detection 97.1 92.7 92.3 93.7 64.4 65.3 23.1 39.0 36.1 15.4 34.6 60.0 -- 100 100 --
Minimum <1 <0.1 <0.5 <0.01 <0.8 <5 <2 <0.04 <0.7 <0.01 <1 <0.2 -- 1900 100 --
Maximum 4168 3.4 3.3 0.76 210 390 100 8 120 0.08 11 0.84 -- 63000 4700 --
Median 58 0.5 1.1 0.129 6 25 BDL BDL BDL BDL BDL 0.77 -- 2150 1100 --
Rooftop Water quality from rooftops varies with the type of roof. For more information see the section on Water quality considerations for stormwater and rainwater harvest and use/reuse

TSS=total suspended solids, NO2=nitrite, NO3=nitrate, TN=total nitrogen, Cl=chloride, Cu=copper, Zn=zinc, Ni=nickel, Cd=cadmium, Cr=chromium, CN=cyanide, VOC=volatile organic compound, FC=fecal coliform, EC=E. coli, FS=fecal streptococci
1 Concentrations are in milligrams per liter
2 Concentrations are in micrograms per liter
3 Concentrations are in Number per 100 milliliters
4Data is for trans-1,3-Dichloropropene and bromomethane
5 Data was selected from states with a similar climate to MN. The appropriate states were determined using Figure 1.3 from the Stormwater BMP Design Supplement for Cold Climates document.
6BDL = below detection level
7The following censoring techniques were used for this data:

  • If detection rates were 90% or greater, a value of "0" was substituted for non-detects.
  • If detection rates were greater than 50% but 90% or less, a value of 1/2 the detection limit was substituted for non-detects.
  • If detection rates were 50% or less, the median was assumed to be below the method detection level.


Nitrogen

map of nitrate distribution in MN
Map of nitrate distribution in Minnesota. (Source: “Condition of Minnesota’s Groundwater, 2007-2011, MPCA”, with permission)
Summary of characteristics of nitrate-nitrogen. Sources:Pitt et al., 1994, 1999; Weiss et al., 2008; ATSDR, 2011.
Mobility Mobile
Solubility High
Abundance in stormwater Low/moderate
Toxicity Low. Primary concern is for infants less than 6 months in age.
Degradation potential High in anaerobic environments; low in aerobic environments
Adsorption/absorption Low
Plant uptake High
Potential risk to groundwater Low/moderate based on high mobility but relatively low concentrations in urban stormwater.

For an excellent review of nitrogen, link here. The following discussion provides a general overview of nitrogen in stormwater and fate and transport in soil and the vadose zone.

Nitrogen is found in many forms in stormwater runoff, with the most common forms being ammonium+ammonia, organic nitrogen, nitrate, and nitrite. Detectable concentrations of nitrogen occur in more than 95 percent of samples collected from urban runoff (International Stormwater Database). Total nitrogen concentrations in urban stormwater are typically in the 1 to 2 milligram per liter range. Concentrations tend to be somewhat higher in residential areas compared to other land uses (International Stormwater Database).

Ammonium, ammonia, and organic nitrogen comprise the reduced forms of nitrogen and typically account for about two-thirds of total nitrogen in stormwater runoff, although this varies widely with source area (see EPA). Together, these forms are expressed as Total Kjeldahl nitrogen. These forms of nitrogen have low mobility and are attenuated in most stormwater management BMPs through adsorption or oxidation to nitrate.

Nitrate is highly mobile in aerobic environments. It is estimated to be the most common nonpoint-source groundwater contaminant in the world (Gurdak & Qi, 2012). Despite its high solubility, nitrite is detected with much less frequency than nitrate because nitrite oxidizes rapidly to form nitrate. Nitrate concentrations in stormwater are typically 1 milligram per liter or less, well below the drinking water standard of 10 milligrams per liter.

Ammonia is highly toxic to humans and aquatic organisms, but concentrations in stormwater are typically well below levels of concern. Nitrate has relatively low toxicity, although concentrations exceeding 10 milligrams per liter in drinking water can lead to the phenomenon known as “blue baby syndrome” which affects babies less than 6 months old (Prey et al., 2000). Nitrates and nitrites have not been classified as carcinogenic, however a metabolic pathway exists that lead to formation of N-nitroso compounds, some of which are carcinogenic (ATSDR, 2011).

Chloride

Summary of characteristics of chloride. Sources:Pitt et al.; Neiber et al., 2014.
Mobility Mobile
Solubility High
Abundance in stormwater Seasonal high (winter, early spring)
Toxicity Low
Degradation potential Low
Adsorption/absorption Low
Plant uptake Low
Potential risk to groundwater High

Chloride in stormwater often comes from the salts used in road surface deicing agents. Only limited data was found in the International Stormwater Database for chloride concentrations in stormwater runoff. Chloride was detected in approximately 38 percent of the 29 samples that were submitted to the database. Only sites in northern climates were included in this analysis.

Chloride is highly mobile in soil and will readily leach through the vadose zone and into groundwater.

At elevated concentrations, chloride can become toxic to aquatic life. Elevated levels of chloride can also result in low oxygen conditions, leading to the release of phosphorous and metals sorbed to the solids (Novotny et al., 2008). In addition, high levels of chloride will increase the density of the water, causing the salt containing water to settle to the bottom of the water body. This results in stratification and disrupts lake mixing patterns (New Hampshire Department of Environmental Services).

Cyanide

Summary of characteristics of cyanide. Sources:ATSDR, 2006; EPA Technical Factsheet: Cyanide, N.D.
Mobility Mobile
Solubility Depends on form of cyanide.
Abundance in stormwater Seasonal (highest in winter, early spring)
Toxicity High
Degradation potential Moderate if not at toxic concentrations
Adsorption/absorption Nitriles and soluble cyanides (e.g. H- and K-cyanide) have low absorption potential. Insoluble forms may sorb to soil particles.
Plant uptake Low
Potential risk to groundwater Low based on low concentrations in stormwater runoff

Cyanide is often found in road salt, where it is used as an anti-caking agent. Another source of cyanide is discharge from industrial facilities. Only limited data was found in the International Stormwater Database for cyanide concentrations in stormwater runoff. Cyanide was detected in approximately 10 percent of the 23 samples submitted to the Database. As with chloride, only sites in northern climates were included.

Mobility in soil depends on the form of cyanide. Nitriles have the potential to leach to ground water as they do not adsorb to soil. They tend to be resistant to hydrolysis in soil or water. Cyanide-containing herbicides have more moderate potential for leaching. Soluble cyanide compounds such as hydrogen and potassium cyanide have low adsorption to soils with high pH, high carbonate and low clay content. At pH less than 9.2, most free cyanide is expected to convert to hydrogen cyanide, which is highly volatile. Soluble cyanides are not expected to bioconcentrate. Insoluble cyanide compounds such as the copper and silver salts may adsorb to soils and sediments EPA.

Cyanide is an extremely toxic pollutant. It prevents the body from using oxygen and at a sufficient concentration it can lead to death. Low exposure can cause headache or dizziness (ATSDR, 2006). Chronic exposure can lead to nerve damage or thyroid problems.

Metals

Summary of characteristics of metals. Sources:Pitt et al., 1994; Weiss et al., 2008; ATSDR, 2004, 2005, 2007, 2012
Mobility Very low/intermediate
Solubility Low
Abundance in stormwater Low/high
Toxicity Variable (see discussion in text)
Degradation potential Low
Adsorption/absorption High
Plant uptake Low
Potential risk to groundwater Low, except possibly for zinc

A nationwide analysis of stormwater runoff by Pitt et al. (2004) found one or more metal in almost all samples tested. Of primary concern are cadmium, copper, lead, and zinc (Nieber et al., 2014). The aforementioned metals were detected at varying frequencies in the sites that were reported in the International Stormwater Database. Cadmium was detected in 42 percent of 2,234 samples, copper in 86 percent of 3,125 samples, lead in 75 percent of 2,667 samples, and zinc in 98 percent of 3,552 samples.

Metals typically have low solubility and are not mobile in soil. Most are readily adsorbed within typical pH ranges found in soil. Mobility typically increases for most metals as pH decreases. metals may also form complexes with organic matter and these may increase their mobility.

At trace concentrations, several of these metals are essential to human life. At higher concentrations they can be toxic. Cadmium has the potential to bioaccumulate in the ecosystem, and at high enough concentrations, it can kill aquatic life. In humans, cadmium has been found to lead to kidney damage (ATSDR, 2012). Copper is toxic to both human and animal life. Short term exposure often results in gastrointestinal distress while long term exposure can lead to kidney damage. People with Wilson’s Disease are especially vulnerable to the effects of copper (ATSDR, 2004). Lead toxicity targets the nervous system and long term exposure may result in a decreased performance in tests that measure the function of the nervous system. Lead can also result in anemia or a small increase in blood pressure. At high concentrations, lead can damage the brain and kidneys (ATSDR, 2007). Zinc is toxic to aquatic life and can effect human health if it is ingested at levels 10 to 15 times higher than the amount needed for general health. Zinc can cause stomach cramps, nausea, and vomiting. Long term exposure can lead to anemia and a decrease in good cholesterol. Zinc may also have an effect on reproduction, though this has not been confirmed (ATSDR, 2005).

Pesticides

Summary of characteristics of pesticides. Sources: Pitt et al., 1994
Mobility Intermediate/mobile
Solubility Variable
Abundance in stormwater Low/moderate
Toxicity Generally high
Degradation potential Variable. Ranges from days to years.
Adsorption/absorption Variable; generally moderate/high
Plant uptake Herbicides are more likely to be taken up by plants than insecticides
Potential risk to groundwater Variable, mainly low to moderate. Fungicides and nematocides are the most mobile (Pitt et al., 1999). See Tables 2 and 3 in Pitt et al. (1999) for the mobility potential of several common pesticides (type in full address to access pdf document: http://www.researchgate.net/profile/Shirley_Clark2/publication/222468641_Groundwater_contamination_potential_from_stormwater_infiltration_practices/links/00b7d523c9e3b35d0a000000.pdf).

Pesticides in stormwater runoff come from land application of insecticides, herbicides, fungicides, rodenticides, and algaecides. Only limited data was found for pesticides in the International Stormwater Database. Pesticides were not detected in any of the 12 samples submitted to the Database. In a summary of studies and sampling events presented in Pitt et al., (1994), pesticides such as diazionon, Malathion, 2,4-D, fungicides, dacthal, as well as many others were detected in stormwater runoff. A 1990 study by the EPA found 46 pesticides in the groundwater of 35 states. In Minnesota specifically, 14 types of pesticides were detected (Pitt et al., 1994).

Pesticides have been linked to cancer, birth defects, nerve damage, and many other disorders. Toxicity varies widely among pesticides, with insecticides typically being more toxic than herbicides. Oklahoma State University produced a report summarizing toxicity for major pesticides.

Polycyclic Aromatic Hydrocarbons (PAHs)

Summary of characteristics of pesticides. Sources: Pitt et al., 1994
Mobility Low/intermediate; decreases with increased molecular weight
Solubility Low/intermediate; decreases with increased molecular weight
Abundance in stormwater Varies
Toxicity Generally high
Degradation potential Variable. The potential for degradation depends on the types of microorganisms present in the soil as well as they type of contaminant. See Haritash and Kaushile (2009) for a review of the biodegradation process.
Adsorption/absorption High
Plant uptake Low
Potential risk to groundwater PAHs with the lower molecular weight have a moderate to high transportation potential while the heavier PAH have a low potential. See Tables 2 and 3 in Pitt et al. (1999) for the mobility potential of several common PAHs (type in full address to access pdf document: http://www.researchgate.net/profile/Shirley_Clark2/publication/222468641_Groundwater_contamination_potential_from_stormwater_infiltration_practices/links/00b7d523c9e3b35d0a000000.pdf).

Polycyclic Aromatic Hydrocarbons (PAHs) are compounds consisting of two or more aromatic rings. They are found naturally in soils but are also created by the incomplete combustion of organic chemicals. Common examples of PAHs include napthlene, benzo(a)pyrene, chrysene, and pyrene. While the health risks vary with the different types of PAHs, they are generally toxic (ASTDR, 1995). Toxicity typically increases with increasing molecular weight and even small concentrations of the most toxic PAHs are a concern. No information was given in the International Stormwater Database on their occurrence in stormwater. Hwang and Foster (2006) found stormwater runoff concentrations in the part per billion (microgram per liter) range, with automobiles being the primary source. Coal tar sealants have also been shown to be an important contributor to PAHs in stormwater runoff (Watts et al., 2010; Mahler et al., 2012.)

The health effects of PAHs will depend on the type of PAH present. Benzo(a)pyrene for example causes reproductive difficulties and leads to an increased risk of cancer. In general, PAHs with a higher molecular weight are more toxic, less soluble, and more persistent in the environment.

Volatile Organic Compounds (VOCs)

Summary of characteristics of pesticides. Sources: Pitt et al., 1994
Mobility Mobile
Solubility Variable
Abundance in stormwater Low
Toxicity Generally high
Degradation potential Variable. It is dependent on the type of VOC, presence of certain microbial species, availability of carbon sources, and environmental conditions.
Adsorption/absorption Low
Plant uptake Low
Potential risk to groundwater Moderate

Volatile Organic Compounds (VOCs) are a large group of carbon-based chemicals that easily evaporate at room temperature Minnesota Department of Health. Some common groups of VOCs include the following.

  • BTEX (benzene, toluene. ethylbenzene, xylene) compounds, commonly found in gasoline, paints, and solvents.
  • Halogenated compounds, which are organic compunds containing fluorine, chlorine, bromine, or iodine. Chlorinated compounds are the most common of these and they are widely used as solvents and degreasers.
  • non-halogenated compounds, which includes a large number of compounds with a wide variety of uses. Examples include ketones (e.g. acetone), alcohols (ethanol), and ethers (methyl tert-butyl ether). Fairly limited data on VOC were found in the International Stormwater Database. VOC were detected in 31 percent of the 519 samples submitted to the Database

The health effects of VOCs vary depending on the type present and exposure pathway. Exposure can occur via inhalation or ingestion. Often times VOCs effect the nervous system, kidneys and/or liver. Some are carcinogens, while other may cause irritation when in contact with the skin (MN Department of Health, N.D.). The EPA provides a summary of health effects from ingestion for many of the more common VOCs.

Pathogens

Pathogens, or disease causing organisms, can be broken into three categories: bacteria, protozoa, and viruses. Examples of the different types of pathogens are shown below.

Pathogen types and examples (adapted from Urban Waterways: Removal of Pathogens in Stormwater, North Carolina, N.D.)
Link to this table.

Type Example pathogens (disease)
Bacteria Salmonella (Salmonellosis), Escherichia coli (E. coli) O125:H7 (Gastroenteritis), Vibrio cholera (Cholera), and Salmonella typhi (Typhoid fever)
Protozoa Giardia lamblia (Giardiasis), Cryptosporidium (Cryptosporidiosis), Entamoeba histolytica (amoebic dysentery)
Virus Hepatitis A (infectious hepatitis), Rotavirus (Gastroenteritis, Adenovirus (respiratory disease, gastroenteritis)


Many of these pathogens are commonly found in runoff and may pose a threat to human health. Fecal coliform and E.coli bacteria are the most commonly used indicators of pathogen presence. E. coli was found in 100 percent of the 24 samples submitted to the International Stormwater Database. Fecal coliforms were detected in 86 percent of the 151 samples submitted to the Database. Clark and Pitt (2007) found fecal streptococci and E. coli in 94 and 95.5 percent, respectively, of the municipal separate storm sewer outfalls they tested (presented in Nieber et al., 2014). Select pathogens are discussed in further detail below. Please note that the mobility of these pathogens is based on the worst case scenario (i.e. sand/low organic soils).

Coliforms (including fecal coliforms and E. coli)

Coliforms include fecal coliforms and E. coli. Fecal coliform is a bacteria associated with both human and animal waste. E. coli is a subset of the fecal coliforms. Overall, most strains of E. coli are harmless, although some are in fact pathogenic. Those that are pathogenic may cause, among other things, diarrhea, urinary tract infections, respiratory illness, and pneumonia. Fecal coliforms and E. coli are often used as indicator organisms because their presence often indicates that other, more pathogenic organisms are present. There is growing evidence, however, that these organisms might not correlate well with the presence or absence of viruses and other pathogens. Some people are moving towards using total coliforms, though E. coli and fecal coliforms are still common. Below is a list of some of the characteristics of coliforms (Clark and Pitt, 2007, as presented in Nieber et al., 2014; some information is based on characteristics of other bacteria in Pitt et al., 1994):

  • Abundance in stormwater: Likely present
  • Mobility: Low/intermediate
  • Potential transport to groundwater: Low/moderate
Giardia lamblia (Giardia)

Giardia is a protozoan pathogen that causes gastrointestinal illness if ingested. Specifically, it can cause diarrhea, stomach or abdominal cramps, upset stomach or nausea, and dehydration (CDC, 2012). Below is a list of some of the characteristics of Giardia (Based on protozoa characteristics provided in Pitt et al., 1994):

  • Abundance in stormwater: Likely present
  • Mobility: Low/intermediate
  • Potential transport to groundwater: Low/moderate
Cryptosporidium

Like Giardia, Cryptosporidium is a protozoan pathogen that causes gastrointestinal illnesses if ingested. Common symptoms are stomach or abdominal cramps, nausea, severe diarrhea, and dehydration. If a person is immuno-compromised, this pathogen can be fatal. Below is a list of some of the characteristics of Cryptosporidium (Based on protozoa characteristics provided in Pitt et al., 1994):

  • Abundance in stormwater: Likely present
  • Mobility: Low/intermediate
  • Potential transport to groundwater: Low/moderate
Enterovirus

The group Enterovirus is made up of many different viruses, including polio. Often times a person who becomes infected with a non-polio Enterovirus does not become sick. Of those that do, common symptoms range from symptoms similar to the common cold up to an infection of the heart or brain which could lead to paralysis. Below is a list of some of the characteristics of Enterovirus (Pitt et al., 1994):

  • Abundance in stormwater: Likely present
  • Mobility: High
  • Potential transport to groundwater: High

Pollutant fate and transport

A concern with infiltration of stormwater runoff is the potential transport of pollutants in stormwater through soil and into groundwater, where they may impact drinking water supplies or surface water when discharged to lakes, rivers or wetlands. Many pollutants are attenuated in stormwater control practices (BMPs), in soil or the vadose zone, or in groundwater. Some pollutants are poorly attenuated, however, and these represent a potential risk. This section discusses the process of attenuation and includes an overview of the fate and transport of the most common pollutants in stormwater runoff.

Process of natural attenuation

Subsurface soil has the ability to remove some types of pollutants through a process called natural attenuation. Natural attenuation refers to the “reduction in mass or concentration of a compound in groundwater over time or distance from the source of constituents of concern due to naturally occurring physical, chemical, and biological processes, such as; biodegradation, dispersion, dilution, adsorption, and volatilization” (ASTM, 2003). It is emerging as a viable, and in some cases the preferred remedy for dealing with contaminated groundwater. It is often the preferred remedy because natural attenuation does not transfer the pollutants from one location to another but rather breaks them down in place, often into non-toxic end products.

The breakdown is often times performed by bacteria that naturally inhabit many of the ground water environments, or by die-off, such as with pathogens. More and more it is being discovered that bacteria are able to break down chemicals once thought to be virtually non-biodegradable. For example, components of gasoline such as benzene, toluene, ethylbenzene, and xylene (BTEX) are now known to biodegrade in ground water to carbon dioxide and water. Other contaminants, including chlorinated solvents (e.g., dry-cleaning solvents), can also biodegrade under particular conditions. In some cases, natural biodegradation may break down contaminants in ground water faster than they can be removed by engineered systems. Other types of removal that can occur include filtration, adsorption, and sedimentation.

Natural attenuation is not always a completely effective remedy by itself. In cases where the contamination is spreading more quickly than it can naturally break down, where drinking-water wells are in close proximity, where the characteristics of the pollutant does not lend itself to natural attenuation, or when toxic breakdown products occur, engineered systems are needed. Whether or not a pollutant will be removed from the stormwater runoff is determined by the characteristics of the chemical and subsurface conditions.

Nitrate

schematic showing fate of nitrogen in soil
Schematic illustrating the processes affecting the fate of nitrogen in soil. (Source: Low Impact Development Center / LID-stormwater.net http://www.lid-stormwater.net/greenroofs_benefits_ncycle.htm, with permission).

The primary forms of nitrogen in soil are organic nitrogen, ammonium, and nitrate. Nitrate is typically mobile in soil and is readily leached through soil and into the vadose zone. Organic nitrogen and ammonium are relatively immobile in soil but can be transformed to nitrate. Thus, when nitrogen containing compounds are present in the subsurface, there is a potential for nitrate to contaminate groundwater.

The fate of nitrogen in soil is affected by oxidation-reduction reactions. In addition, nitrogen in the root zone can be taken up by plants. In the vadose (unsaturated) zone, ammonium and ammonia undergo nitrification to become nitrite (NO2-) and then nitrate (NO3-). This process requires aerobic bacteria. If an anoxic zone is present, denitrification may occur within the infiltration BMP. When undergoing denitrification, the nitrate is reduced to molecular nitrogen (N2) and is lost to the atmosphere (WEF, 2012). If no anoxic zone is present, or the right bacteria are not present, nitrate will leach. Other removal mechanisms for nitrogen besides nitrification and denitrification are sedimentation and plant metabolism.

Due to relatively low concentrations in stormwater runoff, nitrate has only a low to moderate potential to contaminate the groundwater. BMPs that lack an engineered media with organic material and that allow stormwater runoff to infiltrate quickly will be most susceptible to nitrae leaching. These include infiltration basins and trenches, underground infiltration systems, and permeable pavement.

Chloride

Chloride has a high potential to contaminate groundwater. It is soluble, non-filterable, and does not sorb to solids (Levelton Consultants Ltd., 2008). There is no effective removal mechanism for chlorides. In addition, concentrations in stormwater runoff can be very high during winter and early spring, particularly in land use settings where road salt is used extensively. Rather than being removed, chloride concentrations are usually found to increase as infiltrated stormwater passes through the soil as naturally-occurring chloride is also removed from soil (Pitt et al., 1999).

Cyanide

At the soil surface, cyanide compounds will form hydrogen sulfide and evaporate into the atmosphere. In the soil, cyanide is fairly mobile but at low concentrations will most likely biodegrade under aerobic and anaerobic conditions (ATSDR, 2006).

Metals