Summary of Information to Include on a Boring Log
Link to this table
Include on Log Description Example / Photo
Boring name or number Important to identify and distinguish each boring with a unique name Most borings start with B or BH and end with a number Example: B-01 or BH01
Project name, number, client, and city or county Information is used identification purposes and for sample storage
Boring coordinates and ground surface elevation Each hole should be located and verified with coordinates in case of discrepancies If possible, record ground surface elevation with GPS Locations should be shown on a figure or map Include Datum (NAD29 vs NAD83, NAVD 1929 or NAVD 1988) Understand coordinate systems. For example. UTM is in meters while Lat/long is in degrees or deg/min/sec
Start and end date and time Helpful for tracking how long drilling is taking per borehole A known date can help identify the project for future reference
Start and end date and time.png
Type of drill rig and boring depth Will be used to determine the hammer efficiency if performing blow counts

Examples include: - rubber tire ATV/buggy rig - truck rig

- track rig (CME750)
Drilling method Record method used or depth where there is any change in the method being used

Different drilling methods may require different sampling techniques or

procedures
Drilling methods include: Hollow Stem Auger, Direct Push Technology, Mud Rotary, Rotosonic, Air Rotary, ODEX
Sampling method and sample type Split-spoon samples (disturbed sample)

Grab samples (disturbed sample) Bulk samples such as auger cuttings Make sure to record the date, project number, borehole location, depth of sample,

N value (for SPT sample), and sample number on each sample collected
Sampling method and sample type.png
Sample Recovery Record recovery of samples for comparison to length of drilled sample Note assumed reasoning for poor recovery (i.e. bedrock, gravel stuck in splitspoon) For example, the split-spoon was pounded 18" but only 10" of soil was recovered in the sampler
Soil Density or Consistency Different characterization of coarse and fine grained samples Based on N-value of sample
Color Most colors should be earth tones with descriptors

Include all mottling or redoximorphic feature colors Note iron staining or oxidized areas for indication of previously wet soil that has

been dried out
Grain Size For granular samples only (not for silts and clays) Can be called: very fine-, fine-, medium-, coarse-, or very coarse-grained
Particle shape Can be angular, subangular, subrounded, or rounded Important for understanding depositional environment and weathering of soil
Soil classification USCS (most commonly used): behavioral classification: particle size, color, moisture, inclusions, granular vs. cohesive

USDA: tri-plot (shown in the caption to the right), more of a textural classification based on grain size distribution

ASHTO: more of an engineering classification, based on grain size and Atterberg limits
Soil classification.png
Sedimentary structure Refers to bedding and laminations in the soil Provides insight to origin of soils or potential weathering or chemical reactions experienced Provides insight to geologic hazards (i.e. weak soil layers, collapsibility)
Layer boundaries and thickness Note stratigraphy breaks on logs Unless transition is obvious while drilling, assume it is halfway between sampling intervals
Blow Counts The number of hammer blows to pound the split-spoon 6, 12, 18, and 24 inches into the soil. The 6 to 12 and 12 to 18 inch blow counts are added and recorded as the n-value for that split-spoon. "Refusal" or termination of borehole occurs if the hammer does not advance for >50 blows/6 inches. Note the advancement (i.e. 50/2")
Blow Counts.PNG
Depth to bedrock and/or refusal Note refusal on logs Note sample recovery if refusal is reached in a split spoon interval
Depth of groundwater Record during and after drilling Note perched layers of water in sand or lignite Record cave depth in unstable boreholes Note if water isn't encountered Saturated silts will have high dilatancy
Plasticity Plasticity helps determine if a clay is lean (low plasticity) or fat (high plasticity) Is very dependent on moisture content (i.e. dry fat clay can seem like it has low plasticity)
Moisture Provides indication of water table. For each sample identify if it is moist, wet, or saturated
Inclusions Used to describe the secondary components in a soil sample

"With" - more than 30% of an inclusion should be included as a main descriptor "Some" - 15 to 30%

"Little" - 5 to 15%
X
Topsoil thickness Helpful to know how much topsoil stripping may be necessary Note organic material if present or not X
Photographs Pictures should be taken of each borehole locations

Take photo of stake and all four directions Record and photograph any crop damage

Photograph any interesting soil samples that may be of concern
X