Major Design Elements

Physical Feasibility Initial Check

Drainage Area:' It is HIGHLY RECOMMENDED that the following infiltration practices be designed with the indicated maximum drainage areas:

  • Dry well – 1 acre.
  • Infiltration Trench – 5 acres.
  • Underground Infiltration System – 10 acres.
  • infiltration Basin – between 5 and 50 acres.

Site Topography and Slopes: Unless slope stability calculations demonstrate otherwise, it is HIGHLY RECOMMENDED that infiltration practices be located a minimum horizontal distance of 200 feet from down-gradient slopes greater than 20 percent, and that slopes in contributing drainage areas be limited to 15 percent.

Soils: It is HIGHLY RECOMMENDED that native soils in proposed infiltration areas have a minimum infiltrationn rate of 0.2 inches per hour (typically Hydrologic Soil Group A, B and C soils). Initially, soil infiltration rates can be estimated from NRCS soil data, and confirmed with an on-site infiltration evaluation or geotechnical investigation (see Step 6 of the Design Procedures section for investigation procedures). It is HIGHLY RECOMMENDED that native soils have silt/clay contents less than 40 percent and clay content less than 20 percent, and that infiltration practices not be situated in fill soils.

Information: It is REQUIRED that impervious area construction be completed and pervious areas established with dense and healthy vegetation prior to introduction of stormwater into an infiltration practice.

Depth to groundwater table and bedrock:


Warning: It is REQUIRED that infiltration practices be designed with a minimum vertical distance of 3 feet between the bottom of the infiltration practice and the seasonally high water table or bedrock layer (see also Step 8 under the Design Procedure section).


Local authorities may require greater separation depths.

Site Location / Minimum Setbacks: It is HIGHLY RECOMMENDED that infiltration practices not be hydraulically connected to structure foundations or pavement, to avoid seepage and frost heave concerns, respectively. If ground water contamination is a concern, it is RECOMMENDED that groundwater mapping be conducted to determine possible connections to adjacent groundwater wells.


Warning: The minimum setbacks in the table below are REQUIRED by the Minnesota Department of Health for the design and location of infiltration practices. It will be necessary to consult local ordinances for further guidance on siting infiltration practices.

Recommended minimum setback requirements. This represents the minimum distance from the infiltration practice to the structure of concern. If the structure is aboveground, the distance is measured from the edge of the permeable pavement to the structure. If the structure is underground, the setback distance represents the distance from the point of infiltration through the bottom of the permeable pavement system to the structure.
Link to this table

Setback from Minimum Distance [feet]
Property Line 10
Building Foundation* 10
Private Well 50
Septic System Tank/Leach Field 35
* Minimum with slopes directed away from the building.



Karst: It is HIGHLY RECOMMENDED that infiltration practices not be used in active karst formations without adequate geotechnical testing.


Conveyance

It is HIGHLY RECOMMENDED that a flow splitter or diversion structure be provided to divert the Vwq to the infiltration practice and allow larger flows to bypass the practice, unless the infiltration practice is sized to retain Vcp, Vp10 or Vp100. Where a flow splitter is not used, it is HIGHLY RECOMMENDED that contributing drainage areas be limited to the appropriate size given the BMP and an overflow be provided within the practice to pass part of the Vwq to a stabilized watercourse or storm drain. It is also HIGHLY RECOMMENDED that overflow associated with the Vp10 or Vp100 storm (depending on local drainage criteria) be controlled such that velocities are non-erosive at the outlet point (to prevent downstream slope erosion), and that when discharge flows exceed 3 cubic feet per second, the designer evaluate the potential for erosion to stabilized areas and infiltration facilities.

Pre-treatment

Warning: It is REQUIRED that some form of pre-treatment, such as a plunge pool, sump pit, filter strip, sedimentation basin, grass channel, or a combination of these practices be installed upstream of the infiltration practice.


It is HIGHLY RECOMMENDED that the following pre-treatment sizing guidelines be followed:

  • Before entering an infiltration practice, stormwater should first enter a pre-treatment practice sized to treat a minimum volume of 25 percent of the Vwq.
  • If the iinfiltration rate of the native soils exceeds 2 inches per hour a pre-treatment practice capable of treating a minimum volume of 50 percent of the Vwq should be installed.
  • If the iinfiltration rate of the native soils exceeds 5 inches per hour a pre-treatment practice capable of treating a minimum volume of 100 percent of the Vwq should be installed.

It is HIGHLY RECOMMENDED that pre-treatment practices be designed such that exit velocities from the pre-treatment systems are non-erosive (less than 3 feet per second) and flows are evenly distributed across the width of the practice (e.g., by using a level spreader).

Information: - Use low-impact earth moving equipment - DO NOT Overexcavate


Treatment

Space Occupied: Space varies depending on the depth of the practice. Typically, infiltration trenches are three to twelve feet deep with a width less than 25 feet. A dry well is essentially a smaller version of an infiltration trench, consistent with the fact that the drainage area to an infiltration trench is typically five times greater (or larger) than that of a dry well. Underground infiltration systems are larger practices that range in depth from approximately 2 to 12 feet. The surface area of all infiltration practices is a function of MPCA’s 48-hour drawdown requirement and the infiltration capacity of the underlying soils.

Practice Slope: It is RECOMMENDED that the bottom of all infiltration practices be flat, in order to enable even distribution and infiltration of stormwater. It is RECOMMENDED that the longitudinal slope range only from the ideal 0 percent up to 1 percent, and that lateral slopes be held at 0 percent.

Side Slopes: It is HIGHLY RECOMMENDED that the maximum side slopes for an infiltration practice be 1:3 (V:H).


Schematic of Effective infiltration area for side slopes less than 1-3
Schematic of Effective infiltration area for side slopes less than 1-3


Depth: The depth of an infiltration practice is a function of the maximum drawdown time and the design infiltration rate.


Warning: The REQUIRED drawdown time for infiltration practices is 48 hours or less, and so the depth of the practice should be determined accordingly.


Warning: Groundwater Protection: It is REQUIRED that runoff from potential stormwater hotspots (PSHs) not be infiltrated unless adequate pre-treatment has been provided. Infiltration of runoff from confirmed hotspot areas, industrial areas with exposed significant materials, or vehicle fueling and maintenance areas is PROHIBITED.


Aesthetics: infiltration basins can be effectively integrated into the site planning process, and aesthetically designed as attractive green spaces planted with native vegetation. Infiltration trenches are less conducive to site aesthetics, but the surface of trenches can be designed with turf cover crops if desired.


Landscaping

Warning: It is REQUIRED that impervious area construction be completed and pervious areas established with dense and healthy vegetation prior to introduction of stormwater into an infiltration practice.

It is RECOMMENDED that vegetation associated with infiltration practices be established to blend into the surrounding area, that native species be used wherever possible. It is HIGHLY RECOMMENDED that deep rooted plants such as prairie grass be used, because they increase the infiltration capacity of the underlying soils. Dry wells and infiltration trenches can be covered with permeable topsoil and planted with grass to match the surrounding landscape.

Due to soil compaction concerns, it is HIGHLY RECOMMENDED that infiltration areas not be used for recreational purposes unless a soil amendment is used to off-set compaction.

It is HIGHLY RECOMMENDED that vegetation associated with infiltration practices be regularly maintained and bare areas seeded. Mowing practices can be used to maintain native vegetation.

It is RECOMMENDED that soil testing be conducted in infiltrationpractices, to determine if fertilizer application is warranted. Incorporating mulch or compost into the soil or planting with salt tolerant grasses can counter soil fertility problems caused by high chloride concentrations

Information: It is HIGHLY RECOMMENDED that designs include an observation well consisting of an anchored six-inch diameter perforated PVC pipe fitted with a cap to facilitate periodic inspection and maintenance.


Safety

Dry wells, infiltration trenches and subsurface infiltration systems do not pose any major safety hazards. Infiltration basins should have similar side slope considerations as ponds and wetlands.

Warning: If a dry well or infiltration trench is greater than five feet deep, it is REQUIRED that OSHA health and safety guidelines be followed for safe construction practices.


Additional information on safety for construction sites is available from OSHA.


When riser pipe outlets are used in iinfiltration basins, it is HIGHLY RECOMMENDED that they be constructed with manholes that either have locks or are sufficiently heavy to prevent easy removal.

Fencing of dry wells and iinfiltration trenches is neither necessary nor desirable. infiltration basins may warrant fencing in some situations.