Line 1: Line 1:
 
{{alert|''This page is an edit and testing page use by the wiki authors. It is not a content page for the Manual. Information on this page may not be accurate and should not be used as guidance in managing stormwater.''|alert-danger}}
 
{{alert|''This page is an edit and testing page use by the wiki authors. It is not a content page for the Manual. Information on this page may not be accurate and should not be used as guidance in managing stormwater.''|alert-danger}}
{{alert| This page is currently undergoing revision|alert-under-construction}}
+
{{alert|This page is in development|alert-under-construction}}
  
 
[[File:General information page image.png|left|100px|alt=image]]
 
[[File:General information page image.png|left|100px|alt=image]]
  
The Source Loading and Management Model (WinSLAMM) is a proprietary stormwater quality model originally developed for the United States Geological Survey (USGS) for the evaluation of non-point pollution in urban areas and pollutant removal at water quality<span title="one of many different structural or non–structural methods used to treat runoff"> '''best management practices'''</span> (BMPs). WinSLAMM uses experimentally derived <span title="The runoff coefficient (C) is a dimensionless coefficient relating the amount of runoff to the amount of precipitation received. It is a larger value for areas with low infiltration and high runoff (pavement, steep gradient), and lower for permeable, well vegetated areas (forest, flat land)."> [https://stormwater.pca.state.mn.us/index.php?title=Runoff_coefficients_for_5_to_10_year_storms '''runoff coefficients''']</span> to predict runoff and associated pollutant loading from a number of land use types. A unique feature in WinSLAMM is that within defined land use types (e.g., commercial, residential, etc.), the program tracks loading from many different types of source areas (e.g., roofs, parking lots, etc.) and further distinguishes source areas using source area parameters (e.g., is the roof flat or pitched? Does the roof drain to a pervious surface?, etc.). WinSLAMM provides this level of specificity so that unique <span title="The runoff coefficient (C) is a dimensionless coefficient relating the amount of runoff to the amount of precipitation received. It is a larger value for areas with low infiltration and high runoff (pavement, steep gradient), and lower for permeable, well vegetated areas (forest, flat land)."> [https://stormwater.pca.state.mn.us/index.php?title=Runoff_coefficients_for_5_to_10_year_storms '''runoff coefficient''']</span> and pollutant loading assumptions can be applied to sources areas within land use types, allowing for refinement of runoff and pollutant loading results.
+
This page provides information on water treatment residuals. While providing extensive information on water treatment residuals, there is a section focused specifically on stormwater applications for water treatment residuals.
  
WinSLAMM predicts pollutant removal at water quality BMPs based on correlation to experimental results (<span title="A model based on experimental data. Empirical models can be deterministic or probabilistic.">'''empirical'''</span>) as well as modeling the generation and removal of particulates through <span title="Sedimentation is the process by which solids are removed from the water column by settling. Sedimentation practices include dry ponds, wet ponds, wet vaults, and other devices."> [https://stormwater.pca.state.mn.us/index.php?title=Stormwater_sedimentation_Best_Management_Practices '''sedimentation''']</span> and <span title="Filtration Best Management Practices (BMPs) treat urban stormwater runoff as it flows through a filtering medium, such as sand or an organic material. They are generally used on small drainage areas (5 acres or less) and are primarily designed for pollutant removal. They are effective at removing total suspended solids (TSS), particulate phosphorus, metals, and most organics. They are less effective for soluble pollutants such as dissolved phosphorus, chloride, and nitrate."> [https://stormwater.pca.state.mn.us/index.php?title=Filtration '''filtration''']</span> (<span title="models based on an understanding of the physics of the hydrological processes">'''physically-based'''</span>). By modeling hydraulic performance at BMPs and physically tracking the <span title="an index (means of expression) indicating what sizes (particle size) of particles are present in what proportions (relative particle amount as a percentage where the total amount of particles is 100 %) in the sample particle group to be measured"> '''particle size distribution'''</span> (PSD) through BMPs, WinSLAMM is capable of modeling bypass from BMPs and is capable of predicting performance of BMPs in series (i.e.,<span title="multiple BMPs that work together to remove pollutants utilizing combinations of hydraulic, physical, biological, and chemical methods"> [https://stormwater.pca.state.mn.us/index.php?title=Using_the_treatment_train_approach_to_BMP_selection '''treatment train''']</span>). WinSLAMM is a continuous model which can produce results for long term simulations and produce results for individual rainfall events. It should be noted that WinSLAMM simulations are done in batch mode, which means that it is not modeling individual rainfall events in real-time, and accounting for antecedent moisture conditions for pervious runoff, the way that P8 does.
+
==Overview and description==
  
WinSLAMM is a versatile program suitable for <span title="the amount of a pollutant from both point and nonpoint sources that a waterbody can receive and still meet water quality standards"> [https://stormwater.pca.state.mn.us/index.php?title=Total_Maximum_Daily_Loads_(TMDLs) '''total maximum daily load''']</span> (TMDL) applications ranging from TMDL development, to demonstrating <span title="the portion of a receiving water's assimilative capacity that is allocated to one of its existing or future point sources of pollution"> '''wasteload allocation'''</span> (WLA) and permit compliance from individual <span title="A municipal separate storm sewer system (MS4) is a means of transportation, individually or in a system, (e.g. roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, storm drains, etc.) that are: owned or operated by a public entity (e.g. cities, townships, counties, military bases, hospitals, prison complexes, highway departments, universities, etc.) with jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes. This includes special districts under State law (sewer, flood control, or drainage districts, etc.), an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the Clean Water Act; designed or used for collecting or transporting stormwater; not a combined sewer; and not part of a publicly owned treatment works."> '''Municipal Separate Storm Sewer Systems'''</span> (MS4s). Download links for WinSLAMM and related documentation are provided below. As noted above, WinSLAMM is a proprietary model which needs to be licensed or purchased before use.
+
Water treatment residuals are  is a charcoal-like substance that’s made by burning <span title="carbon-based compounds, originally derived from living organisms"> '''organic material'''</span> from <span title="organic matter used as a fuel"> '''biomass'''</span>. The two most common proceesses for producing biochar are pyrolysis and gasification. During pyrolysis, the organic material is heated to 250-800<sup>o</sup>C in a limited oxygen environment. Gasification involves temperatures greater than 700<sup>o</sup>C in the presence of oxygen.
*[http://www.winslamm.com/winslamm_updates.html Model download]
 
*[http://www.winslamm.com/purchase.html Model purchase]
 
*[http://www.winslamm.com/Select_documentation.html Model documentation]
 
  
'''Note''': information provided in the following subsections does not reiterate or re-present information readily available in model documentation files. Instead, guidance provided in this document provides engineers and planners with recommendations for development of model inputs, provides guidance for interpreting and summarizing model results, provides supplementary information not included in model documentation, and provides examples showing how WinSLAMM can be used to demonstrate TMDL compliance.
+
Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc); yard, food and forestry wastes; and animal manures. Clean <span title="a raw material used to provide energy"> '''feedstocks'''</span> with 10 to 20 percent moisture and high <span title="a complex organic polymer deposited in the cell walls of many plants, making them rigid and woody"> '''lignin'''</span> content are recommended. Examples are field residues and woody biomass. Using contaminated feedstocks, including feedstocks from railway embankments or contaminated land, can introduce toxins into the soil, drastically increase soil pH and/or inhibit plants from absorbing minerals. The most common contaminants are heavy metals—including cadmium, copper, chromium, lead, zinc, mercury, nickel and arsenic, and polycyclic aromatic hydrocarbons (PAHs).
  
==Applicability to demonstrating WLA compliance==
+
Biochar is black, highly porous, lightweight, fine-grained and has a large surface area. Approximately 70 percent of its composition is carbon. The remaining percentage consists of nitrogen, hydrogen and oxygen among other elements. Biochar’s chemical composition varies depending on the feedstocks used to make it and methods used to heat it.
WinSLAMM is a continuous water quality model capable of summarizing runoff and associated [https://stormwater.pca.state.mn.us/index.php?title=Total_Suspended_Solids_(TSS)_in_stormwater total suspended solids] (TSS) and [https://stormwater.pca.state.mn.us/index.php?title=Phosphorus total phosphorus] (TP) generation, removal, and outflow loading from individual catchments, individual BMPs and junctions, or as a model wide summary. Additionally, because WinSLAMM models the particulate and pollutant particle-scale distribution through filtration and sedimentation BMPs and models hydraulic performance of BMPs based on watershed loading and BMP dimensions, the model is capable of accurately predicting pollutant removal through BMPs <span title="multiple BMPs that work together to remove pollutants utilizing combinations of hydraulic, physical, biological, and chemical methods"> '''in series'''</span> as well as predicting runoff and pollutant bypass from undersized <span title="a BMP that does not treat the full water quality volume"> '''undersized BMPs'''</span>. Due to this flexibility, WinSLAMM is capable of providing accurate pollutant removal estimates regardless of BMP network and subwatershed configuration, and is capable of demonstrating compliance to mass-based Water Quality Based Effluent Limits (WQBELs), concentration-based WQBELS, and areal-loading based WQBELS (e.g., lbs of TSS per acre per year) for both TSS and TP.
 
  
==Model inputs==
+
Biochar benefits for soil may include but are not limited to
The following subsections outline data sources and special consideration related to model inputs, model setup, and model initialization. '''Note''': these subsections do not represent information readily available in [http://www.winslamm.com/Select_documentation.html Model documentation], but instead highlight data sources (e.g., spatial datasets), special consideration, and important notes for engineers and planners to consider while generating model inputs.
+
*enhancing <span title="Soil structure describes the arrangement of the solid parts of the soil and of the pore space located between them. It is determined by how individual soil granules clump, bind together, and aggregate, resulting in the arrangement of soil pores between them."> '''soil structure'''</span> and <span title="Soil aggregates are groups of soil particles that bind to each other more strongly than to adjacent particles. The space between the aggregates provide pore space for retention and exchange of air and water."> '''soil aggregation'''</span>;
 +
*increasing water retention;
 +
*decreasing acidity;
 +
*reducing <span title="a potent greenhouse gas emitted during agricultural and industrial activities, combustion of fossil fuels and solid waste, as well as during treatment of wastewater"> '''nitrous oxide'''</span> emissions;
 +
*improving <span title="Porosity or void fraction is a measure of the void (i.e. empty) spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%."> '''porosity'''</span>;
 +
*regulating nitrogen <span title="a soluble chemical drained away from soil, ash, or similar material by the action of percolating liquid, especially rainwater"> '''leaching'''</span>;
 +
*improving <span title="a measure of the amount of salts in soil"> '''electrical conductivity'''</span>; and
 +
*improving microbial properties.
  
===Current file data: parameter files===
+
Biochar is also found to be beneficial for composting, since it reduces greenhouse gas emissions and prevents the loss of nutrients in the compost material. It also promotes microbial activity, which in turn accelerates the composting process. Plus, it helps reduce the compost’s ammonia losses, bulk density and odor ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Spears, 2018; Hoffman-Krull, 2019]).
WinSLAMM requires a number of parameter files to generate runoff, particulate loading, and pollutant accumulation and washoff from source areas within each land use type. Each of the required parameters files is described briefly, below:
 
  
*''Rain File'' (".RAN"): specifies rainfall event date, duration, and depth for the modeled period.
+
==Applications for biochar in stormwater management==
*''Runoff Coefficient File'' (“.RSVX”): specifies the runoff coefficient (Rv) for each source area as a function of rainfall event depth.
+
Biochar has several potential applications for stormwater management. Below is a brief review of what we know about biochar.
*''Particulate Solids Concentration File'' (“.PSCX”): specifies the particulate solids concentration (mg/L) for each source area as a function of rainfall depth.
+
*Biochar increases water holding capacity of soil, improves aggregation in fine-textured soils, increases saturated hydraulic conductivity in fine- and medium-textured soils, and decreases hydraulic conductivity in very coarse-textured soils.
*''Source Area PSD and Peak to Average Flow Ratio File'' (“.CSV”): specifies the particle scale distribution (PSD) file (“.CPZ”) and the peak-to-average flow ratio for each source area.
+
*Improve the fertility of nutrient-poor soils. In nutrient-poor soils, biochar appears to consistently improve nutrient cycling and availability for plants. Results for other soils are mixed and depend on the biochar and soil characteristics.
**''Particle Size Parameter Files'' (“.CPZ”): specifies the PSD for particulates generated from a WinSLAMM source area. Unique PSD “.CPZ” files can be applied to each source area.
+
*Biochar generally improves retention of metals and PAHs.
*''Street Delivery File'' (“.STD”, six (6) files): specifies the washoff coefficient for street textures as a function of rainfall depth. Note: unique street delivery files can be applied to road surface sources areas for each of the six (6) land use types.
+
*Results for bacteria and pathogens are mixed, but some studies indicate increased retention, primarily associated with straining resulting from increased surface area and micropore structure in biochar-amended soils.
*''Pollutant Probability Distribution Files'' (“.PPDX”): specifies the particulate pollutant concentration associated with generated particulate (mg/kg) and the dissolved pollutant concentration (mg/L) for all modeled pollutant constituents from all source areas within each land use type.
+
*Biochar is likely to have limited effects on phosphorus retention unless specifically amended to retain phosphorus.
  
The Rain File (“.RAN”), which specifies rainfall events, duration, and depth for the modeled period, is regionally specific and should be developed for the study area. The [https://www.ncdc.noaa.gov/cdo-web/search National Oceanic and Atmospheric Administration] (NOAA) maintains a searchable database that can be used to search for hourly precipitation data based by city or geographic region (e.g., zip code). Local area airports (e.g., Minneapolis Saint Paul International Airport) are another resource that can be used to develop required precipitation data inputs. As described in model documentation, rainfall input “.RAN” files can be created within the Rainfall File Editor (“Utilities &rarr; Parameter Files &rarr; Rainfall Files”).
+
Possible implications for stormwater management include the following.
 +
#'''Engineered media'''. Biochar incorporated into engineered media can increase water retention and infiltration. Low-nutrient biochars (e.g. wood-based versus manure- or sludge-based) produced at relatively low temperatures (less than 600<sup>o</sup>C) can improve phosphorus retention. Biochar may enhance nutrient cycling and improve fertility in media with relatively low nutrient concentrations (e.g. media mixes having lower fractions of compost).
 +
#'''Contaminant hotspots'''. Biochar can be incorporated into treatment practices in areas with high or potentially high concentrations of metals and organic pollutants.
 +
#'''Turf amendment/soil compaction'''. Biochar can added to turf or compacted media to improve hydraulic performance and nutrient cycling.
 +
#'''Filtration practices'''. Biochar can be used alone or mixed with other components for stormwater filtration applications, including but not limited to the following:
 +
##Filtration media in new treatment systems, especially roof downspout units and aboveground vaults;
 +
##Supplemental or replacement media in existing treatment systems such as sand filters;
 +
##Direct media addition to a stormwater storage vault ;
 +
##Direct application in bioretention or swale systems;
 +
##Filtration socks and slings;
 +
##Hanging filters in catch basins.
 +
#'''Underground infiltration basins and trenches'''. Many underground infiltration practices are constructed in very coarse textured soils that may have limited ability to retain pollutants. Biochar can reduce infiltration rates and adsorb pollutants in these systems.
 +
#'''Climate-related effects'''. While not specifically a stormwater objective, biochar incorporated into stormwater practices can sequester carbon and reduce nitrous oxide emissions.
  
The remaining parameter files (Runoff Coefficient File (“.RSVX”), Particulate Solids Concentration File (“.PSCX”), Source Area PSD and Peak to Average low Ratio File (“.CSV”), Particle Size Parameter Files (“.CPZ”), Street Delivery Files (“.STD”), and Pollutant Probability Distribution Files (“.PPDX”)) contain input values that must be generated from literature values, case studies, or water quality monitoring data. For this reason, default parameter files have been generated for several geographic locations across the United States and are provided in WinSLAMM documentation. Additionally, some state and local agencies have developed state-wide or regional WinSLAMM input parameter files. For this reason, it is recommended that the engineer or designer first determine if local or regional parameter files have been developed before utilizing default regional parameter files provided in the WinSLAMM model files. [http://www.winslamm.com/docs/05%20WinSLAMM%20v%2010.2%20User%27s%20Guide%20-%20Parameter%20Files.pdf Documentation] shows the six WinSLAMM parameter files regions. The “Great Lakes” region provides coverage for the majority of Minnesota and should be used if local or regional parameter files are not available for the study area.
+
{{:Potential biochar stormwater applications}}
  
'''Special Consideration(s)''':<br>
+
Further reading
*The rainfall editor within WinSLAMM can be used to make Rain File(s) (“.RAN”) unique to the study area (“Utilities &rarr; Parameter Files &rarr; Rainfall Files”).
+
*[https://pprc.org/wp-content/uploads/2014/08/Emerging-Stormwater-BMPs_Biochar-as-Filtration-Media_2014.pdf Emerging Best Management Practices in Stormwater: Biochar as Filtration Media] - Pacific Northwest Pollution Prevention Resource Center
*Parameter files can be viewed and edited from “Utilities &rarr; Parameter Files”.
+
*[Ihttps://www.deeproot.com/blog/blog-entries/improving-stormwater-control-measure-performance-with-biochar Improving Stormwater Control Measure Performance with Biochar] - Deeproot
*Default parameter files unique to each “Parameter File Region” are included in WinSLAMM program files.
+
*[http://onlinepubs.trb.org/onlinepubs/IDEA/FinalReports/Highway/NCHRP182_Final_Report.pdf Reducing Stormwater Runoff and Pollutant Loading with Biochar Addition to Highway Greenways] - Final Report for NCHRP IDEA Project 182
 +
*Mohanty et al. (2018)
  
===Current file data: job control===
+
==Effects of feedstock and production temperature==
Job control parameters related to model run time are specified in the “Current File Data” window. Job control parameters are described briefly, below:
+
Although the basic structure of all biochars is similar, the physical-chemical properties of biochar varies with the source material and with the temperature used in production.
  
*''Start Date / End Date'': specifies the start and stop date of simulation.
+
===Effect of feedstock (source material)===
*''Start / End of Winter'' (mm/dd): specifies the date range that represents winter conditions. Winter conditions impact how runoff is generated as well as particle accumulation and washoff from road surfaces.
+
Since a wide variety of organic material can be used to produce biochar, it is not feasible to discuss each material separately. We provide the following general conclusions. Literature used to develop these conclusions is provided at the end of this section.
 +
*Compared to wood derived biochar, non-wood feedstock such as grass, sludge, and manure yields biochar with fewer aromatic but more aliphatic groups and higher ash content. Greater concentrations of aliphatic compounds are associated with more reactive biochar.
 +
*Manure- and sludge-based biochar contains higher concentration of nutrients than wood-based biochar and are therefore more likely to be a source of nutrient leaching.
 +
*Manure- and sludge-based biochar attenuate metals more than wood based biochars
 +
*Biochar parameters most affected by feedstock properties are total organic carbon, fixed carbon, and mineral elements of biochar. Feedstocks such as sawdust, wheat straw, and peanut shell have higher carbon concentrations than feedstocks such as manure, sludges, and waste paper.
 +
*Capacity for carbon sequestration is primarily affected by feedstock, with higher carbon compounds having greater sequestration capacity.
 +
*High ash biochars, such as manures and coffee husk, exhibit higher cation exchange capacity, which may increase nutrient capture, although high initial nutrient concentrations may offset this and even contribute to nutrient loss.
  
'''Special Consideration(s)''':<br>
+
The [https://biochar-international.org/wp-content/uploads/2019/11/IBI_Biochar_Standards_V2.1_Final1.pdf International Biochar Initiative (see Appendix 6)] proves a classification system for biochar feedstocks, shown below.
*The start date / end date must be within the date range in the Rain File (“.RAN”).
+
*Unprocessed Feedstock Types
*Model documentation files suggest a winter start and end date of December 3 (12/03) to March 21 (03/21) for the “Great Lakes” parameter file region.
+
**Rice hulls & straw
 +
**Maize cobs & stover
 +
**Non-maize cereal straws
 +
**Sugar cane bagasse & trash
 +
**Switch grass, Miscanthus & bamboo
 +
**Oil crop residues e.g., sugar beet, rapeseed
 +
**Leguminous crop residues e.g., soy, clover
 +
**Hemp residues
 +
**Softwoods (coniferous)
 +
**Hardwoods (broadleaf)
 +
*Processed Feedstock Types
 +
**Cattle manure
 +
**Pig manure
 +
**Poultry litter
 +
**Sheep manure
 +
**Horse manure
 +
**Paper mill sludge
 +
**Sewage sludge
 +
**Distillers grain
 +
**Anaerobic digester sludge
 +
**Biomass fraction of MSW – woody material
 +
**Biomass fraction of MSW – yard trimmings
 +
**Biomass fraction of MSW – food waste
 +
**Food industry waste
  
[[File: WinSLAMM pollutant selection window.png|300px|thumb|alt=image for WinSLAMM|<font size=3>WinSLAMM pollutant selection window (Click on image for higher resolution)</font size>]]
+
'''Literature'''
 +
*Zhaoa et al. (2013) examined cow manure, pig manure, shrimp hull, bone dregs, wastewater sludge, waste paper, sawdust, grass, wheat straw, peanut shell, Chlorella, and water weeds
 +
*Rimena et al., (2017) examined wood-based biochars (eucalyptus sawdust, pine bark), sugarcane bagasse, chicken manure, and coffee husk
 +
*Jindo et al. (2014) examined rice husk, rice straw, apple tree wood chips, and oak tree wood chips
 +
*Mohanty et al. (2018) provide an extensive discussion and literature review of different feedstocks and associated biochar properties
 +
*Gai et al. (2014) studied twelve biochars produced from wheat straw, corn straw, and peanut shell
 +
*[https://biochar-international.org/biochar-feedstocks/ International Biochar Initiative] provide a general discussion of feedstocks
 +
*Conz et al. (2017) studied poultry litter, sugarcane straw, rice hull and sawdust
 +
*[https://extension.tennessee.edu/publications/Documents/W829.pdf Jahromi and Fulcher] studied biosolids and green waste, corn straw and rice straw, gasifed rice hulls, hardwood, pelleted agricultural or forestry residues, switchgrass, and timber harvest residues
 +
*Zhao et (2019) studied sewage sludge, agriculture biomass waste, and wood biomass waste
  
===Job control: pollutant selection===
+
===Effect of production temperature===
Accessed through the “Pollutants” tab on the main WinSLAMM model menu, the “Pollutant Selection” window defines which pollutant(s) included in the Pollutant Probability Distribution (“.PPDX”) file will be modeled and tracked in reported model outputs.
+
Changes in the properties of biochar result from loss of volatile organic matter as temperature increases. This leads to a gradual loss in the number of functional groups on the biochar and increased aromaticity as temperature increases.
  
'''Special Consideration(s)''':<br>
+
In general, the following conclusions are applicable for biochar used in stormwater applications.
*For phosphorus TMDLs, it is recommended that the “particulate”, “dissolved”, and “total” radial options be selected.
+
*If retention of nutrients and most pollutants is desired, biochars produced at temperatures less than 600<sup>o</sup>C should be selected
*Only pollutants included in the selected Pollutant Probability Distribution File (“.PPDX”) file will be included in the “Pollutant Selection” window.
+
*If the goal is to improve soil physical or hydraulic properties biochars produced at temperatures greater than 600<sup>o</sup>C should be selected
  
===Job control: program options===
+
The following information comes from a literature review of the effects of production temperature on biochar
Job control parameters and options related to output generation within WinSLAMM “Program Options” (“Tools &rarr; Program Options”) should be reviewed by the engineer or designer before performing model simulation. The “Program Options” window is separated into three tabs. A brief discussion of each of the “Program Options” tab is provided below:
+
*Biochar yield and contents of N, hydrogen and oxygen decrease as pyrolysis temperature increases from 400˚C to 700˚C
 +
*pH and contents of ash and carbon increase with greater pyrolysis temperature.
 +
*Particle size and porosity increase with greater pyrolysis temperature.
 +
*Hydrophobicity increases with greater pyrolysis temperature.
  
*''Default Current File Data'': specifies default parameter files applied to “Current File Data”
+
[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References '''Literature''']
*''Default Model Options'': specifies several job control parameters and options related to model output. The designer or engineer should review the “Default Time Increment (min), which defines the time increment used to route flow and pollutant hydrographs between control practices. Additionally, if outflow hydrographs or particle size distribution files are required, the “Create Hydrograph and Particle Size Distribution .csv Files” radial button should be selected.
+
*Mohanty et al., (2018)
*''Default Output File Options'': specifies optional result outputs for each of eleven (11) control practices. Reporting options should be reviewed by the engineer or designer based on reporting information required and control practices modeled before performing model simulation.
+
*Zhaoa et al., (2013)
 +
*Klasson, (2017)
 +
*Zhao et al., (2017)
 +
*Jindo et al., (2014)
 +
*Wang et al., (2018)
 +
*Rimena et al., (2017)
 +
*Lyu et al. (2016)
 +
*Gai et al.. (2014)
 +
*Conz et al. (2017)
  
===Land use===
+
==Properties of biochar==
[[File:Example of applying standard land uses in WinSLAMM.png|400px|thumb|alt=image for WinSLAMM|<font size=3>Example of applying standard land uses in WinSLAMM (Click on image for higher resolution)</font size>]]
+
This section includes a discussion of chemical and physical properties of biochar, and potential contaminants in biochar, .
  
Within WinSLAMM, drainage basins are modeled using one or more “land uses” (e.g., residential, commercial, etc.), which are represented by land use nodes within the model space. Within each land use, area is further delineated into “source areas” (e.g., roofs, sidewalks, etc.). Runoff and pollutant loading from drainage areas is impacted by the land use type, as well as the source area type. A complete list of land use and source area types in provided in the table below. Finally, each source area type is further characterized by a “source area parameters”. For example, the “source area parameter” for a roof source area define whether the roof is pitched or flat, whether the roof drains onto a pervious or impervious surface, etc. Developing this detail of input parameters is possible for small, development-scale study areas, but is not feasible for larger study areas (e.g., municipal-scale study areas). For this reason, WinSLAMM has a number of default “Standard Land Uses” which can be applied to any of the six (6) land use types.
+
===Chemical-physical properties of biochar===
 +
The properties of biochar vary depending on the feedstock and production temperature, as discussed above. Consequently there is considerable variability in the chemical and physical properties of different biochars. The table below summarizes data from our literature review. Some conclusions from the literature are summarized below.
 +
*'''Biochar has a large surface area.'''
 +
*'''Cation exchange capacity (CEC) decreases as pyrolysis temperature increases'''. This is due to the loss of volatile organic content and associated functional groups as temperature increases. As CEC decreases, the ability of biochar to retain negatively charged chemicals, such as phosphate, decreases.
 +
*'''Non-wood vegetative feedstocks have a greater CEC than wood feedstocks.''' This is due to a greater percentage of aliphatic compounds and associated functional groups. Non-wood feedstocks primarily consist of grasses.
 +
*'''Sludges and manure-based biochars have high nutrient content and are thus not satisfactory for managing stormwater'''
  
Standard Land Use (SLU) types can be applied to any land use by right-clicking the land use and selecting “Apply Standard Land Use”. There are several SLU types for each land use. For example, the SLUs for commercial land use include “office park”, “strip commercial”, “downtown commercial”, and “shopping center” (see adjourning figure). SLUs simplify land use modeling by applying default source area and source area parameters based on the selected SLU. With and SLU selected, the engineer or designer only needs to assign the acres of area in three different soil texture groups (sand, silt, and clay) and select “Create Land Use and Exit”. It is important for the designer or engineer to review land use assumptions and definitions applied within each modeled SLU. A complete list of SLUs, definitions, and modeling assumptions is provided within model documentation help files (see the “Standard Land Uses and Source Areas” section of the model help file).
+
{{:Chemical and physical properties of biochar}}
  
{{:WinSLAMM land use and source area types}}
+
===Potential contaminants in biochar===
 +
Potential contaminants associated with biochar are a function of the source material and production temperature. Of greatest concern are metals and polycyclic aromatic hydrocarbons (PAHs). [https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Oleszcuk et al.] (2013) examined metal and PAH concentrations in four biochars (elephant grass, coconut shell, wicker, and wheat straw). Metal concentrations (mg/kg) in the biochars are summarized below. Tier 1 Soil Reference Values (SRVs) are included in parentheses.
 +
*Cd: 0.04-0.87 (25)
 +
*Cu: nd-3.81 (100)
 +
*Ni: nd-9.95 (560)
 +
*Pb: 20.6-23.7 (300)
 +
*Zn: 30.2-102.0 (8700)
 +
*Cr: nd-18.0 (44,000 for CrIII; 87 for CrVI)
  
When modeling drainage areas using SLUs in WinSLAMM, user inputs include defining the area in each of the six (6) land use types, assigning appropriate SLU types, and determining the soil textures within each land use type. When possible, land use should be determined using record drawing or parcel data specific to the model area. When site-specific information is not available, land use information can be assigned from regional and national land use databases.  
+
Concentrations in biochar are well below Tier 1 SRVs.
  
*[https://www.usgs.gov/core-science-systems/national-geospatial-program/land-cover USGS National Land Cover Database (NLCD)] - nationwide coverage
+
In the study by Oleszcuk et al. (2013), total PAHs ranged from 1124.2 ng/g to 28339.1 ng/g. The dominant group of PAHs were 3-ring compounds which comprised 64.6% to 82.6% of total PAHs content. The primary compounds included, in order of abundance, phenanthrene, fluorene, anthracene, and pyrene. No 6-ring PAHs were observed. Concentrations of PAHs and other organic contaminants, such as dioxins, decreases with increasing pyrolysis temperature (Lyu et al., 2016).
*[https://metrocouncil.org/Data-and-Maps/Data/Metadata/Landuse-Hist-Research.aspx Metropolitan Council Generalized Land Use] - Twin Cities seven-county area coverage
 
  
Similarly, soil texture data should be specified using site-specific soil sampling data. When site-specific information is not available, it is recommended that the soil information be determined from publically available spatial soil datasets, such as the NRCS Soil Survey Geographic Database (SSURGO). SSURGO soils data is available for download online through the [https://websoilsurvey.nrcs.usda.gov/ Web Soil Survey].  A summary of soil textures related to hydrologic soil groups (HSGs) and Unified Soil Classifications can be found [https://stormwater.pca.state.mn.us/index.php?title=Design_infiltration_rates here].
+
In general, biochars mixed with soil do not inhibit germination or root growth. Biochar may enhance soil fertility by providing nutrients or more commonly by slowing the release of nutrients from materials such as compost. was observed. Toxic effects have been observed for some invertebrates, indicating that in sensitive environments, biochar testing is advisable ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Oleszcuk et al., 2013; Getz et al., 2018; Flesch et al., 2019; Wang et al., 2017]) .
  
'''Special Consideration(s)''':<br>
+
==Effects of biochar on physical and chemical properties of soil and bioretention media==
*Standard Land Use (SLU) types can be utilized for large study areas where analysis of individual source areas and source area parameters for each land use type is not feasible. SLU assumptions should be reviewed by the designer or engineer before applying to modeled land use types (see the “Standard Land Uses and Source Areas” section of the [http://www.winslamm.com/Select_documentation.html model help file]).
+
In this section we provide information on effects of biochar on pollutant attenuation and the physical properties of soil and bioretention media.
  
===Control practices===
+
===Effect of biochar on retention and fate of phosphorus===
Structural (e.g., wet ponds, biofiltration, etc.) and non-structural (e.g., street sweeping) water quality BMPs are referred to in WinSLAMM as control practices. Control practices can be applied to the drainage system within the model space, or can be assigned directly to land use source areas. The table below provides a complete list of all control practices included in version 10.4 of WinSLAMM. As can be seen, all twelve (12) control practices can be modeled directly from source areas, but only eight (8) can be modeled within the drainage system model network. Reviewing control practices shows that the BMPs that cannot be modeled in the drainage system network include non-structural BMPs (e.g., street sweeping) and BMPs that are related to a specific source area type (e.g., cisterns typically treat roof areas, porous pavement applies to paved source areas such as parking lots, etc.).
+
<div style="float:right">
 +
<table class="infobox" style="border:3px; border-style:solid; border-color:#FF0000; text-align: right; width: 300px; font-size: 100%">
 +
<tr>
 +
<td>'''Biochar is not likely to provide significant phosphorus retention in bioretention practices unless impregnated with cations (e.g. magnesium) during production at relatively low temperatures (e.g. less than 600<sup>o</sup>C.)'''
 +
</td>
 +
</tr>
 +
</table>
 +
</div>
  
[[File: Control practices applied to source areas (left) and the drainage system (right).png|400px|thumb|alt=image for WinSLAMM|<font size=3>Control practices applied to source areas (left) and the drainage system (right) (Click on image for higher resolution)</font size>]]
+
Biochar may have several properties for managing stormwater, such as increased water and pollutant retention, improving soil physical properties, and attenuating bacteria and pathogens. Biochar has been examined as a potential amendment to engineered media in bioretention or other stormwater control practices. With respect to phosphorus, information from the literature is mixed. Below are summaries from several studies.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Mohanty et al.] (2018) observed that biochar does not absorb phosphate efficiently. Phosphorus retention can be enhanced by impregnating biochar with cations such as magnesium and zinc.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Reddy et al. (2014) found that biochar reduced influent phosphate concentrations by 47% in column experiments. Influent concentrations were 0.57 and 0.82 mg/L for unwashed and washed biochar, respectively. These concentrations are on the high end of concentrations found in urban stormwater.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Yaoa et al.] (2011) observed retention in biochar-(sugar beet source)amended soils that were fertilized. Adsorption was dominated by magnesium oxides and maximum adsorption occurred at pH values less than 4.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Zhaoa et al.] (2013) studied different feedstocks and observed high phosphorus concentrations in animal-based feedstocks and wastewater sludge (0.065 - 0.44%) compared to other feedstocks (0.007 - 0.07%)
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Iqbal et al.] (2015) examined leaching of phosphorus from compost (80% yard and 20% food waste) and co-composted biochar (100% fir-forest slash). They found biochar amendments did not significantly reduce the leaching of phosphorus compared to the compost only treatment. Phosphorus leached from biochar, but because phosphorus concentrations in biochar are low, this leaching contributed little total phosphorus. Leached phosphorus was primarily in the form of orthphosphate.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Han et al.] (2018) found that addition of biochar to soil led to increased desorption of phosphorus during winter freeze-thaw cycles.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Soinne et al.] (2014) observed no effect of biochar on phosphorus retention in a sandy and two clay soils.
  
{{:WinSLAMM control practice summary}}
+
===Effect of biochar on retention and fate of other pollutants===
 +
*'''Nitrogen'''. Biochar effects on nitrogen retention depend on the properties of the biochar and stormwater runoff. Biochars produced at relatively low temperatures (less than 600<sup>o</sup>C) provide some retention of organic nitrogen and ammonium nitrogen in stormwater runoff. Mechanisms for nitrogen retention include adsorption of ammounium and nitrogen immobilization. Leaching of nitrogen may decrease due to increased water holding capacity ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Iqbal et al., 2015; Gai et al., 2014; Zheng et al., 2013; Ding et al., 2010]).
 +
*'''Metals'''. Biochar enhance retention of metals in stormwater runoff. ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Reddy et al., 2014; Domingues et al., 2017; Iqbal et al., 2015])
 +
*'''Organics'''. Biochar significantly retains polynuclear aromatic hydrocrabons in stormwater runoff ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Reddy et al., 2014;  Domingues et al., 2017; Ulrich et al., 2017; Iqbal et al., 2015])
 +
*'''Bacteria and viruses'''. Biochar effects on bacteria and virus retention are a function of the particle size of the biochar. Fine-grained biochars enhance removal of bacteria in stormwater runoff through straining of microorganisms ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Reddy et al., 2014; Sasidharan et al., 2016; Yang et al., 2019]).
 +
*'''Dissolved organic carbon'''. Biochar shows limited retention of dissolved carbon in stormwater runoff ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Iqbal et al., 2015]).
 +
*'''Greenhouse gas emissions'''. Biochar effectively sequesters carbon and reduces loss of greenhouse gases when incorporated into soil or media, particularly soil with high organic matter content ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Zhaoa et al., 2013; Mohanty et al., 2018; 37. Agyarko-Mintah et al., 2017]).
  
[[File: Example of inputs required for the porous pavement control practice.png|300px|thumb|alt=image for WinSLAMM|<font size=3>Example of inputs required for the porous pavement control practice (Click on image for higher resolution)</font size>]]
+
===Effect of biochar on soil physical and hydraulic properties===
 +
Because of a large surface area and internal porosity, biochar can affect soil physical properties ([https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Mohanty et al., 2018; Herrera Environmental Consultants, 2015; Iqbal et al., 2015; Imhoff, 2019; Jien and Wang, 2013]). These effects are most pronounced in soils with low organic matter concentration.
  
WinSLAMM predicts pollutant removal at water quality BMPs based on correlation to experimental results (empirical) as well as modeling the generation and removal of particulate through sedimentation and filtration (physically based). To model hydraulic performance, filtration, sedimentation, infiltration, and other parameters unique to certain control practices (e.g., cleaning frequency for hydrodynamic separators), WinSLAMM requires many user-input parameters for each control practice (see example of user inputs required for the porous pavement control practice in the adjourning figure). It is critical that the designer or engineer review required inputs as well as removal algorithms and methodology applying to each control practice modeled. A complete description of model parameters for each control practice can be accessed through the help files within WinSLAMM. Additional information describing removal algorithms, referenced research, particle filtration and settling methodology, and processes unique to certain control practices (e.g., pond scour calculations from wet ponds) is provided model documentation.
+
*'''Porosity and surface area'''. Biochar significantly increases the porosity of most soils.
Because WinSLAMM requires control practice dimensions, actively models hydraulic loading and bypass, and tracks the particulate and associated pollutant PSD through control practices, WinSLAMM is capable of modeling bypass from undersized BMPs and treatment through BMPs in series (i.e., treatment trains).
+
*'''Water holding capcity'''. Biochar significantly increases the water holding capacity of soil.
 +
*'''Hydraulic conductivity'''. Biochar increases the hydraulic conductivity of fine- and medium-grained soils and may decrease the hydraulic conductivity of coarse-grained soils.
 +
*'''Structure'''. Biochar enhances aggregation in soils, thus enhancing soil structure and potentially increasing soil macroporosity.
  
'''Special Consideration(s)''':<br>
+
===Effects of biochar on soil fertility, plant growth, and microbial function===
*To aid in model QAQC and transparency, it is recommended that control practices be modeled within the drainage system model network, rather than be applied to individual source areas within a land use type. Exceptions to this recommendation include control practices which cannot be modeled in the drainage network (e.g., cisterns) and control practices which only treat one source area within the land use group (e.g., a hydrodynamic separator which only treats runoff generated from the “parking lot” source area within a land use type).
+
<div style="float:right">
*The engineer or designer should review parameter definitions and related algorithms for all modeled control practices. Detailed descriptions of model parameters and related removal and loading calculations can be accessed through help files within the program.
+
<table class="infobox" style="border:3px; border-style:solid; border-color:#FF0000; text-align: right; width: 300px; font-size: 100%">
*WinSLAMM does model scour (i.e., resuspension of previously-settled particles) from wet ponds. Pond scour methodology and relation to pond depth should be reviewed by the engineer or designer.
+
<tr>
 +
<td>'''Effects of biochar on soil fertility, plant growth, and microbial function are affected by several factors, including feedstock, production method, soil, application rate, and biochar age. Biochar has few negative effects on fertility, plant growth and microbial function and in many cases has the potential to greatly improve soil physical, chemical and biological conditions.'''
 +
</td>
 +
</tr>
 +
</table>
 +
</div>
  
==Model outputs==
+
[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References DeLuca et al.] (2015) provide an extensive discussion of biochar effects on nutrient cycling, fertility, and microbial function in soil. Their paper is based on an extensive review of the literature at the time of their publication. The following discussion is primarily based on information contained in this document. A list of suggested articles is provided at the end of this section.
  
[[File:Example of WinSLAMM output tab.png|300px|thumb|alt=image for WinSLAMM|<font size=3>Example of WinSLAMM output tab (Click on image for higher resolution)</font size>]]
+
Biochars derived from nutrient rich sources such as manure and sludge may directly provide nutrients. Most biochars, however, have limited direct contribution to the nutrient pool with the exception of potassium and ammonium. Biochar may accelerate nutrient cycling over long time scales by serving as a short-term source of highly available nutrients, which become
 +
incorporated into living biomass and labile soil organic pools. Thus biochar, while typically providing modest inputs of nutrients, enhances the bioavailability of nutrients in soil.
  
WinSLAMM provides a wide variety of model outputs which can be used by engineers and planners to evaluate and demonstrate WLA compliance. Model outputs can be printed to text files or viewed within the output summary window which launches after completion of a model run. Information that is presented in model output files is controlled by the user-assigned “Output Options” (File &rarr; Output Options). It is recommended that Option one (1) “Source Areas by Land Use for Each Rain – Complete Printout” be selected for a majority of reporting purposes related to WLA compliance. A summary of information provided in the output summary and output tabs which launch upon completion of a model run are described, below:
+
Because biochar typically enhances soil physical properties, including increasing water holding capacity, improving gas exchange, increasing surface area and availability of microsites for microbes, and in some cases increasing cation exchange capacity, biochar enhances microbial activity in soil. In addition, carbon in biochar provides a sorptive surface that can retain nutrients and thus minimize leaching and volatilization of nutrients.
  
*''Output summary'': provides an overview of model results for the entire duration of the model run. The output shows the total runoff, particulate (TSS), and pollutant loading and removal with and without control practices. Summaries are provided in terms of mass (e.g., pounds removed), percent reduction (%), and concentration (e.g., mg/L of total phosphorus outflow both with and without control practices). The total area modeled (acres) is displayed as well as the total number of years modeled, allowing for quick calculation of commonly required WLA parameters (e.g., pounds of TSS reduction per year, areal loading of total phosphorus with and without control practices (lbs/acre/year), etc.).
+
Several studies suggest biochar amendments in soil result in increased microbial biomass, while other studies show no effect. Mixed results have also been observed for the effects of biochar on microbial community composition.
*''Output tabs (“land uses”, “junctions”, “control practices”, and “outfall”)'': the individual outputs tabs provide model result summaries for each of the model element groups in WinSLAMM: “Land Use”, “Junctions”, “Control Practices”, and final model “Outfall”. Within each tab, runoff volume, particulate loading (mass and concentration) and pollutant loading (mass and concentration) for each modeled rainfall event are summarized for the selected element (e.g., selecting the “Junctions” tab will provide a summary of model variables at each modeled junction element). In addition to results presented for each individual rainfall event, the “Summary Table” within each model element tab provides a summary of model results for the entire model duration. Outputs on any selected tab can be exported to text and spreadsheet files which can be viewed outside of WinSLAMM by selecting “File &rarr; Print” with the tab selected. The adjourning figure shows an example of the output tab for “Land Uses, Pollutants, Yields”, which shows the TP yield from sources areas within each land use for all modeled rainfall events.
 
  
'''Note''': pollutant summary (mass and concentration) is provided in each of the element tabs with the exception of “Control Practices” (only runoff and particulate loading are summarized for control practices). For this reason, if a summary of pollutant reduction is required at a given control practice, junction elements must be placed upstream and downstream of the control practice. Reduction can then be calculated as: [pollutant loading at upstream junction] – [pollutant loading at downstream junction]. For this reason, pollutant load reduction cannot be calculated at control practices applied to source areas.
+
Specific conclusions from the DeLuca et al. (2015) paper include the following.
 +
*Biochar increases nitrogen mineralization is soils with low mineralization potential (e.g. forest soils). Wood-based biochars appear to have the greatest effect on mineralization.
 +
*Aged biochar shows greater accumulation of inorganic nitrogen, suggesting reduced nitrogen availability and cycling over time. Additions of fresh biochar are recommended if continued enhanced nutrient cycling is desired.
 +
*Low-temperature biochars have greater nitrogen immobilization due to more bioavailable carbon, but immobilization to these biochars is likely to be short-term.
 +
*Biochar effects on nitrogen fixation are mixed, but studies of compost-biochar mixes show a decrease in nitrogen fixation while wood-based biochars show increased fixation.
 +
*Phosphorus in wood-based biochars is largely immediately soluble and readily released to soil, where it becomes available to plants. However, the overall phosphorus concentration in wood-based biochars is much lower than in manure- or sludge-based biochars.
 +
*Application of biochar at varying rates result in an increase in available soil phosphorus, but there is little evidence this translates into increased plant uptake. This may be due to presence of abundant sites for adsorption in fresh biochars. Phosphorus decreases over time as biochar ages.
 +
*Laboratory studies have shown that biochar addition induces an increase in phosphatase activity which would increase the release of P from soil organic matter and organic residues.
 +
*Biochar effects on phosphorus are likely to be greatest in acidic soils, where addition of biochar raises pH and increases the potential adsorption to alkaline metals (calcium, potassium, magnesium).
 +
*Biochar effects on sulfur are uncertain, but are likely to be similar to those for phosphorus. Any enhanced adsorption or mobilization, particularly in aged biochar, will most likely be attributable to enhanced water holding capacity and surface area.
  
'''Special Consideration(s)''':<br>
+
'''Recommended reading'''
*It is recommended that option 1 “Source Areas by Land Use for Each Rain Complete Printout” within “Output Options” (File &rarr; Output Options) be selected for a majority of WLA reporting purposes.
+
*Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A. and Sherlock, R. R. (2011) ‘Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus’,  Pedobiologia, vol 54, pp309–320.
*Only pollutants selected within the “Pollutant Selection” [https://stormwater.pca.state.mn.us/index.php?title=File:WinSLAMM_pollutant_selection_window.png window] will be displayed on model outputs.
+
*Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. and Amelung, W. (2012a) ‘Physical activation of biochar and its meaning for soil fertility and nutrient leaching a greenhouse experiment’, Soil Use and Management, vol 28, pp177–184
*By default, output reporting tabs display results for all modeled rainfall events. Options within “View” can be used to limit or change the outputs displayed (e.g., selecting “View &rarr; 2. Source Area, Junction, Control Practices, and Outfall Totals and Summaries” will limit output windows to display values summarized for the entire model duration, rather than for each modeled rainfall event).
+
*Chan, K. Y. and Xu, Z. (2009) ‘Biochar: nutrient properties and their enhancement’, in J. Lehmann and S. Joseph (eds) Biochar for Environmental Management, Earthscan, London, pp 67–84
*Pollutant summary is provided for all outputs tabs with the exception of “Control Practices”. For this reason, if pollutant reduction from individual control practices is required, junction elements must be placed upstream and downstream of the control practice. Reduction can then be calculated as: [pollutant loading at upstream junction] – [pollutant loading at downstream junction]. '''Note''': based on this methodology, pollutant reduction cannot be calculated for control practices modeled at source areas.
+
*Clough, T. J. and Condron, L. M. (2010) ‘Biochar and the nitrogen cycle: introduction’, Journal of Environmental Quality, vol 39, pp1218–1223
*Selecting “File &rarr; Print…” while viewing any output screen allows the output to be exported to text or spreadsheet files which can be viewed outside of WinSLAMM.
+
*Crutchfield, E. F., Merhaut, D. J., Mcgiffen, M. E. and Allen, E. B. (2010) ‘Effects of biochar on nutrient leaching and plant growth’, Hortscience, vol 45, S163–S163.
 +
*Jeffery, S., Verheijen, F. G. A., Van Der Velde, M. and Bastos, A. C. (2011) ‘A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis’, Agriculture Ecosystems and Environment, vol 144, pp175–187
 +
*Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. (2012) ‘Biochar-mediated changes in soil quality and plant growth in a three year field trial’, Soil Biology and Biochemistry, vol 45, pp113–124
 +
*Joseph, S. D., Downie, A., Munroe, P., Crosky, A. and Lehmann, J. (2007) ‘Biochar for carbon sequesteration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science’ Proceedings from  Australian Combustion Symposium, University of Sydney, Australia, pp1–4
 +
*Laird, D., Fleming, P., Wang, B., Horton, R. and Karlen, D. (2010) ‘Biochar impact on nutrient leaching from a Midwestern agricultural soil’, Geoderma, vol 158, pp436–442
 +
*Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D. (2011) ‘Biochar effects of soil biota – A review’, Soil Biology and Biochemistry, vol 43, pp1812–1836
 +
*Nelson, N. O., Agudelo, S. C., Yuan, W. and Gan, J. (2011) ‘Nitrogen and phosphorus availability in biochar-amended soils’, Soil Science, vol 176, pp218–226
 +
*Pietikäinen, J., Kiikkila, O. and Fritze, H. (2000) ‘Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus’, Oikos, vol 89, pp231–242
 +
*Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H. and Jones, D. L. (2012) ‘Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate’,  Agriculture, Ecosystems, and Environment, vol 158, pp192–199
 +
*Schultz, H. and Glaser, B. (2012) ‘Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment’, Journal of Soil Science and Plant Nutrition, vol 175, pp410–422
 +
*Yoo, G. and Kang, H. (2010) ‘Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment’, Journal of Environmental Quality, vol 41, pp1193–1202
  
===Interpreting model outputs and calculating WLA reporting terms===
+
==Standards, classification, testing, and distributors==
The table below provides a summary of how to generate common TSS and TP WLA reporting terms. WinSLAMM is a continuous model that provides a variety of detailed model outputs, and can therefore be used for a wide variety of WLA compliance review and reporting purposes. WinSLAMM reports particulate (i.e., TSS) loading and reduction at control practices, but does not report pollutant (e.g., dissolved and particulate phosphorus) loading and reduction. For this reason, pollutant loading and reduction at individual BMPs is required, loading and removal can be calculated by placing “junction” elements upstream and downstream of the control practice. Pollutant reduction can then be calculated outside of WinSLAMM as: [pollutant loading at upstream junction] – [pollutant loading at downstream junction].
+
Because of the large number of potential feedstocks, production conditions (primarily temperature), and applications for biochar, biochar classification is an active area of research. The information in this section largely comes from the [https://biochar-international.org/ International Biochar Initiative], but some additional references include the following.
  
{{:Using WinSLAMM to generate load reduction and WLA reporting terms}}
+
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Arbestain et al.] (2015): A biochar classification system and associated test methods
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References  Klassen] (2017): Biochar characterization and a method for estimating biochar quality from proximate analysis results
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Leng et al.] (2019): Biochar stability assessment methods: A review
 +
*[https://biochar-us.org/go-deeper United States Biochar Initiative]
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Budai et al.] (2013): Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability
  
===QAQC of Model Results===
+
===Biochar standards===
The engineer or designer should perform a thorough review of all model inputs and outputs. Model inputs should be generated using best available datasets, including record drawings, development data, bathymetric surveys, and best-available spatial land use, land cover, and soil databases. Upon model completion, results should be reviewed to ensure control practices were routed correctly and applied correctly to sources areas, subwatersheds were routed correctly, and that pollutant removal and areal loading results are within typical ranges based on BMP and land use type, respectively. A general model result QAQC list for WinSLAMM is provided in the table below. Additionally, a literature review of typical average annual event mean concentration (EMC) values is provided [https://stormwater.pca.state.mn.us/index.php?title=TSS_and_TP_EMC_literature_values_for_TMDL_modeling here], and typical TSS and TP removal values for various BMP types is provided [https://stormwater.pca.state.mn.us/index.php?title=Typical_BMP_TSS_and_TP_removal_rates_from_Minnesota_Stormwater_Manual here].
+
The Internation Biochar Initiative (IBI) developed Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, also referred to The Biochar Standards. These standards provide guidelines and is not a formal set of industry specifications. The goal of The Biochar Standards is to "universally and consistently define what biochar is, and to confirm that a product intended for sale or use as biochar possesses the necessary characteristics for safe use. The IBI Biochar Standards also provide common reporting requirements for biochar that will aid researchers in their ongoing efforts to link specific functions of biochar to its beneficial soil and crop impacts." The IBI also provides a certification program. Information on the standards and certification are found on [https://biochar-international.org/characterizationstandard/ International Biochar Institute's website] or at the [https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf IBI's Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil].
  
{{:General WinSLAMM result QAQC list}}
+
The IBI also provides [https://biochar-international.org/biochar-classification-tool/ a biochar classification tool]. Currently, four biochar properties are classified:
 +
*Carbon storage value
 +
*Fertilizer value (P, K, S, and Mg only)
 +
*Liming value
 +
*Particle size distribution
  
{{:TSS and TP EMC literature values for TMDL modeling}}
+
===Distributors===
 +
{{alert|The Minnesota Pollution Control Agency does not endorse specific distributors of biochar or biochar products|alert-warning}}
  
{{:Typical BMP TSS and TP removal rates from Minnesota Stormwater Manual}}
+
A list of biochar distributors is provided on the [https://biochar-us.org/manufacturers-retailers United States Biochar Initiative website (USBI)]. Note the USBI neither provides endorsements nor accepts liability for any particular product or technology listed.
  
<noinclude>
+
===Test methods===
 +
There is no universally accepted standard for biochar testing. The Internation Biochar Initiative (IBI) developed [https://biochar-international.org/wp-content/uploads/2019/11/IBI_Biochar_Standards_V2.1_Final1.pdf Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil]. The goals of this document are to provide "stakeholders and 5 commercial entities with standards to identify certain qualities and characteristics of biochar materials according to relevant, reliable, and measurable characteristics." The document provides information and test parameters and test nethods for three categories.
 +
*Test Category A – Basic Utility Properties (required)
 +
*Test Category B – Toxicant Assessment (required)
 +
*Test Category C – Advanced Analysis and Soil Enhancement Properties
 +
 
 +
The IBI document also provides information on sampling procedures, laboratory standards, timing and frequency of testing, feedstcok and production parameters, frequency of testing, reporting, and additional information for specific types of biochar. The document also [https://biochar-international.org/wp-content/uploads/2019/11/IBI_Biochar_Standards_V2.1_Final1.pdf provides a discussion of H:C ratios], which are used to indicate the stability of a particular biochar.
 +
 
 +
==Effects of aging==
 +
Biochar undergoes transformations in soil after application, primarily through oxidation processes, typically mediated by microbes. Several researchers have studied effects of aging on biochar properties. Although researchers observe similar changes in the chemical and physical structure of biochar with aging, observed effects vary. It is therefore difficult to draw general conclusions about likely changes in the effects of biochar aging on fate of pollutants and soil hydraulic properties.
 +
 
 +
Below is a summary of some research findings.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Mia et al.] (2019) observed an increase in carboxylic and phenolic groups, a reduction of oxonium groups and the transformation of pyridine to pyridone with oxidation. This led to increased adsorption of ammonium and reduced adsorption of phosphate. Addition of biochar derived organic matter improved phosphate retention.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Paetsch et al.] (2018) studied effects of fresh and aged biochar on water availability and microbial parameters of a grassland soil. They observed improved water retention and microbial function with aged biochar. This was attributed to increased soil mineralization in soils with aged biochar.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Paetsch et al.] (2018) observed increased C:N ratios as biochar aged.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Dong et al.] (2017) observed increased specific surface area, increased carbon content, smaller average pore size, but no change in chemical structure of aged biochar versus fresh biochar.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Quan et al]. (2020) and Spokas (2013) observed biologically-mediated changes in aged biochar. Mineralization resulted in decreased carbon content in aged biochar.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Hale et al.] (2012) determined that aged biochar retained its ability to adsorb PAHs.
 +
*[https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Cao et al.] found that aged biochar had decreased carbon and nitrogen contents; reduced pH values, reduced porosity and specific surface area, and increased oxygen-containing functional groups on the surface. In general, the surface characteristics of the aged biochar varied with soil type.
 +
 
 +
==Storage, handling, and field application==
 +
The following guidelines for field application of biochar are presented by Major (2010).
 +
*Biochar dust particles can form explosive mixtures with air in confined spaces, and there is a danger of spontaneous heating and ignition when biochar is tightly packed. This occurs because fresh biochar quickly sorbs oxygen and moisture, and these sorption processes are exothermic, thus potentially leading to high temperature and ignition of the material.
 +
*Volatile compounds present in certain biochar materials may also represent a fire hazard, but the amount of such compounds found in biochar can be managed by managing the pyrolysis temperature and heating rate. Certain chemicals can be added to biochar to decrease its flammability (e.g. boric acid, ferrous sulfate). The best way to prevent fire is to store and transport biochar in an atmosphere which excludes oxygen. Formulated biochar products such as mixtures with composts, manures, or the production of biochar-mineral complexes will potentially yield products which are much less flammable.
 +
*For fine-grained biochars, wind losses can be significant (up to 30% loss has been reported). Biochar can be moistened, although this will add to the weight of the material and increase transportation costs. If wind loss is a concern, apply biochar when winds are mild and/or during a light rain. Pelleted biochars or mixing with other materials may reduce wind loss.
 +
*To avoid water erosion, incorporate biochar into the soil.
 +
*Application rates vary depending on the biochar and the intended use of the biochar.
 +
*Biochar is relatively stable and recalcitrant. In some cases, biochar may improve soil conditions with time. Consequently, biochar application frequency is likely to be on the order of years.
 +
*Biochar can be readily mixed with other materials, such as compost.
 +
*The depth of biochar application varies with the intended purpose.
 +
**For fertility applications, locate biochar near the soil surface in the active rooting zone.
 +
**For moisture management, locate biochar throughout the root zone.
 +
**For carbon sequestration, locate biochar deeper in the soil profile to reduce the likelihood of microbial mineralization.
 +
*For stormwater applications, biochar can be broadcast and then incorporated into the soil. If fertility is the primary objective, banding may be utilized.
 +
*For turf applications, biochar can be mixed with soil (sand and topsoil) and other amendments such as compost.
 +
*Application rates depend on the intended use of a biochar. Field testing is recommended prior to application. Typical rates reported in the literature are 5-50 tonnes of biochar per hectare.
 +
 
 +
==Sustainability==
 +
Because biochar is produced from biomass, including wastes, it is sustainable from an availability or supply standpoint. Sustainable biochar production, however, is less certain based on current economic constraints. Biochar has several potential markets and exploiting these markets is necessary for biochar production to be sustainable. Examples of specific markets include stormwater media, soil health and fertility, and carbon sequestration [Biogreen http://www.biogreen-energy.com/biochar-production/] (accessed December 10, 2019). Sustainable biochar production must also meet certain environmental and economic criteria, includign the following.
 +
*Biochar systems should be, at a minimum, carbon and energy neutral.
 +
*Biochar systems should prioritize the use of biomass residuals for biochar production.
 +
*Biochar systems should be safe, clean, economical, efficient, and meet or exceed environmental standards and regulatory requirements of the regions where they are deployed.
 +
*Biochar systems should promote or enhance ecological conditions for biodiversity at the local and landscape level.
 +
*Biochar systems should not pollute or degrade water resources.
 +
*Biochar systems should not jeopardize food security by displacing or degrading land grown for food; and should seek to complement existing local agro-ecological practices.
 +
 
 +
For more information, see the [https://biochar-international.org/sustainability-climate-change/ International Biochar Initiative discussion] on sustainable biochar production. For a discussion of biochar sustainability, see [https://www.researchgate.net/publication/275770511_Biochar_Sustainability_and_Certification  sustainability and Certification] (Vereijen et al., 2015).
 +
 
 +
==References==
 +
 
 +
*[https://biochar.international/guides/properties-fresh-aged-biochar/ THE PROPERTIES OF FRESH & AGED BIOCHAR]
 +
*[https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3291&context=etd  characterization and engineering]
 +
 
 +
*Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, Cowie A, Harden S, Smillie R.. 2017. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 61:138-149. doi: 10.1016/j.wasman.2016.11.027. Epub 2016 Dec 8.
 +
*Budai; A. R. Zimmerman; A.L. Cowie; J.B.W. Webber; B.P. Singh; B. Glaser; C. A. Masiello; D. Andersson; F. Shields; J. Lehmann; M. Camps Arbestain; M. Williams; S. Sohi; S. Joseph. 2013. Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability. Accessed December 12, 2019.
 +
*Cao, T., Wenfu Chen, Tiexin Yang, Tianyi He, Zunqi Liu, Jun Meng. 2017. Surface Characterization of Aged Biochar Incubated in Different Types of Soil. BioResources. 12:3: 6366-6377
 +
*Conz, R., T. Abbruzzini, C.A. de Andrade, D.M.B.P. Milori. 2017. Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars. Agricultural Sciences 8:9:914-933.
 +
*DeLuca, T.H., M.D. MacKenzie, D.L. Jones. 2015. Biochar effects on soil nutrient transformations.
 +
*Ding, Y., Yu-Xue Liu, Wei-Xiang Wu, De-Zhi Shi, Min Yang, and Zhe-Ke Zhong. 2010. Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns. Water, Air, & Soil Pollution. Volume 213, Issue 1–4, pp 47–55.
 +
*Domingues, R.R., Paulo F. Trugilho, Carlos A. Silva, Isabel Cristina N. A. de Melo, Leoà nidas C. A. Melo, Zuy M. Magriotis, Miguel A. SaÂnchez-Monedero. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS ONE
 +
*Flesch, F., Pia Berger, Daniel Robles-Vargas , Gustavo Emilio Santos-Medrano, and Roberto Rico-Martínez. 2019. Characterization and Determination of the Toxicological Risk of Biochar Using Invertebrate Toxicity Tests in the State of Aguascalientes,México. Appl. Sci. 2019, 9, 1706; doi:10.3390/app9081706.
 +
*Gai X, Wang H, Liu J, Zhai L, Liu S, et al. (2014) Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 9(12). 19 pages. doi:10. 1371/journal.pone.0113888.
 +
*Hale, S.E. Kelly Hanley, Johannes Lehmann, Andrew R. Zimmerman, and Gerard Cornelissen. 2012. Effects of Chemical, Biological, and Physical Aging As Well As Soil Addition on the Sorption of Pyrene to Activated Carbon and Biochar. Environ Sci Tech.
 +
*Han, Y., Byoungkoo Choi, and Xiangwei Chen. 2018. Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China.
 +
*Hardy, B., Steven Sleutel, Joseph E. Dufey, and Jean-Thomas Cornelis. 2019. The Long-Term Effect of Biochar on Soil Microbial Abundance, Activity and Community Structure Is Overwritten by Land Management. Frontiers Environ. Sci. 110:7:1-14. DOI: 10.3389/fenvs.2019.00110.
 +
*Hoffman-Krull, K.H. 2019. [https://rodaleinstitute.org/blog/whats-biochar-how-to-stabilize-carbon-in-your-soil/ WHAT’S BIOCHAR? HOW TO STABILIZE CARBON IN YOUR SOIL]. Rodale Institute.
 +
*Internation Biochar Initiative. Biochar Feedstocks. Accessed December 12, 2019.
 +
*Iqbal, H., Manuel Garcia-Perez, Markus Flury. 2015. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems Science of the Total Environment 521–522 (2015) 37–45
 +
*Jahromi, N.B., and A. Fulcher. What is Biochar and How Different Biochars Can Improve Your Crops. University of Tennessee Extension. Publication W829. Accessed 12/12/2019.
 +
*Jien, Shih-Hao, and Chien-Sheng Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena. 110:225-233
 +
*Jindo, K., H. Mizumoto3, Y. Sawada, M. A. Sanchez-Monedero1, and T. Sonoki. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11, 6613–6621.
 +
*Kasak, K., Jaak Truu, Ivika Ostonen, Jürgen Sarjas, Kristjan Oopkaup, Päärn Paiste, Margit Kõiv-Vainik, Ülo Mander, Marika Truu. 2018. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands Science of the Total Environment 639:67–74
 +
*Klasson, T.K. 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy. 96:50-58.
 +
*Laird, D., Pierce Flemming, Baiqun Wang, Robert Horton, Douglas Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Agronomy Publications. Iowa State University. 9 p.
 +
*Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones PD, Codling G, Giesy JP. 2016. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environ Pollut. 218:1-7. doi: 10.1016/j.envpol.2016.08.014.
 +
*Major, J. 2010. [https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Application.pdf Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems].
 +
*Mensah, A.K., and Kwame Agyei Frimpong. 2018. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. International Journal of Agronomy. Volume 2018, 8 pages. https://doi.org/10.1155/2018/6837404
 +
*Mohanty, S.K., Renan Valenca, Alexander W. Berger, Iris K.M. Yu, Xinni Xiong, Trenton M. Saunders, Daniel C.W. Tsang. 2018. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment Science of the Total Environment, 625: 1644-1658.
 +
*Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W. 2018. Toxicity screening of biochar-mineral composites using germination tests. Chemosphere. 207:91-100. doi:10.1016/j.chemosphere.2018.05.042.
 +
*Nabiul Afrooz, A.R.M., Ana K. Pitol, Dianna Kitt, and  Alexandria B. Boehm. 2018. Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters. Environ Sci: Water Res and Tech. 12:
 +
*Nguyen, N.T. 2015. Adsorption Of Phosphorus From Wastewater Onto Biochar: Batch And Fixed-bed Column Studies
 +
*Oleszczuk, P., Izabela Jo´sko, Marcin Ku´smierz. 2013. Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials 260 (2013) 375– 382.
 +
*Quan G, Fan Q, Zimmerman AR, Sun J, Cui L, Wang H, Gao B, Yan J. 2020. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. J Hazard Mater. 2020 Jan 15;382:121071. doi: 10.1016/j.jhazmat.2019.121071
 +
*Rawat, J., J. Saxena, and P. Sanwal. 2018. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In: Biochar - An Imperative Amendment for Soil and the Environment. DOI: 10.5772/intechopen.82151
 +
*Reddy, K.R., Tao Xie, and Sara Dastgheibi. 2014. Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal Environ Eng. 140:12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000872
 +
*Shamim Mia, Feike A. Dijkstra, and Balwant Singh. 2017.  Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium. Environ. Sci. Technol. 51:8359−8367. DOI: 10.1021/acs.est.7b00647
 +
*Soinne, H., Jarkko Hovi, PriitTammeorg, EilaTurtola. 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma. Volumes 219–220, May 2014, Pages 162-167.
 +
*Spears, S. 2018. [https://regenerationinternational.org/2018/05/16/what-is-biochar/ What is Biochar?] Regeneration International.
 +
*Spokas, K.A. 2013. Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy (2013) 5, 165–176, doi: 10.1111/gcbb.12005
 +
*Ulrich, B.A., Megan Loehnert  and  Christopher P. Higgins. 2017. Improved contaminant removal in vegetated stormwater biofilters amended with biochar Environmental Science: Water Research & Technology. 4:
 +
*Wang, K., Na Peng, Guining Lu, Zhi Dang, 2018. Effects of Pyrolysis Temperature and Holding Time on Physicochemical Properties of Swine-Manure-Derived Biochar. Waste and Biomass Valorization. 1-12 DOI: 10.1007/s12649-018-0435-2
 +
*Yang, F., Yue Zhou, Weiming Liu, Wenzhu Tang, Jun Meng, Wenfu Chen, and Xianzhen Li. 2019. Article Strain-Specific Effects of Biochar and Its Water-Soluble Compounds on Bacterial Growth. Appl. Sci. 9(16), 3209; https://doi.org/10.3390/app9163209.
 +
*Yao, Y., Bin Gao, Mandu Inyang, Andrew R. Zimmerman, Xinde Cao, Pratap Pullammanappallil, Liuyan Yang. 2011 Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential. Bioresource Technology. 102:6273-6278
 +
*Yaoa, Y., Bin Gaoa, Mandu Inyanga, Andrew R. Zimmermanb, Xinde Caoc, Pratap Pullammanappallila, Liuyan Yangd. 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials 190:501–507
 +
*Yuan-Ying Wang, Xiang-Rong Jing, Ling-Li Li, Wu-Jun Liu, Zhong-Hua Tong, Hong Jiang. 2017. Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms. ACS Sustainable Chem. Eng. 2017, 5, 1, 481-488. https://doi.org/10.1021/acssuschemeng.6b01859
 +
*Zhang, M., Muhammad Riaz, Lin Zhang, Zeinab El-desouki, and Cuncang Jiang. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils. 2019. Frontiers Microbio. 12:10:1321. doi: 10.3389/fmicb.2019.01321
 +
*Zhao, J.J. Xin-Jie Shen, Xavier Domene, Josep-Maria Alcañiz, Xing Liao and Cristina Palet. 2019. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports 9. Article 9869.
 +
*Zhao, Shi-Xiang, Na Ta and Xu-Dong Wang  2017. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material Energies, 10:1293; doi:10.3390/en10091293
 +
*Zhaoa, L., Xinde Caoa, Ondˇrej Maˇsekb, Andrew Zimmerman. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256– 257:1– 9
 +
*Zheng, H., Zhenyu Wang, Xia Deng, Stephen Herbert, Baoshan Xing. 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, Volume 206:32-39

Revision as of 22:04, 13 December 2019

Warning: This page is an edit and testing page use by the wiki authors. It is not a content page for the Manual. Information on this page may not be accurate and should not be used as guidance in managing stormwater.
This site is currently undergoing revision. For more information, open this link.
This page is in development
image

This page provides information on water treatment residuals. While providing extensive information on water treatment residuals, there is a section focused specifically on stormwater applications for water treatment residuals.

Overview and description

Water treatment residuals are is a charcoal-like substance that’s made by burning organic material from biomass. The two most common proceesses for producing biochar are pyrolysis and gasification. During pyrolysis, the organic material is heated to 250-800oC in a limited oxygen environment. Gasification involves temperatures greater than 700oC in the presence of oxygen.

Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc); yard, food and forestry wastes; and animal manures. Clean feedstocks with 10 to 20 percent moisture and high lignin content are recommended. Examples are field residues and woody biomass. Using contaminated feedstocks, including feedstocks from railway embankments or contaminated land, can introduce toxins into the soil, drastically increase soil pH and/or inhibit plants from absorbing minerals. The most common contaminants are heavy metals—including cadmium, copper, chromium, lead, zinc, mercury, nickel and arsenic, and polycyclic aromatic hydrocarbons (PAHs).

Biochar is black, highly porous, lightweight, fine-grained and has a large surface area. Approximately 70 percent of its composition is carbon. The remaining percentage consists of nitrogen, hydrogen and oxygen among other elements. Biochar’s chemical composition varies depending on the feedstocks used to make it and methods used to heat it.

Biochar benefits for soil may include but are not limited to

  • enhancing soil structure and soil aggregation;
  • increasing water retention;
  • decreasing acidity;
  • reducing nitrous oxide emissions;
  • improving porosity;
  • regulating nitrogen leaching;
  • improving electrical conductivity; and
  • improving microbial properties.

Biochar is also found to be beneficial for composting, since it reduces greenhouse gas emissions and prevents the loss of nutrients in the compost material. It also promotes microbial activity, which in turn accelerates the composting process. Plus, it helps reduce the compost’s ammonia losses, bulk density and odor (Spears, 2018; Hoffman-Krull, 2019).

Applications for biochar in stormwater management

Biochar has several potential applications for stormwater management. Below is a brief review of what we know about biochar.

  • Biochar increases water holding capacity of soil, improves aggregation in fine-textured soils, increases saturated hydraulic conductivity in fine- and medium-textured soils, and decreases hydraulic conductivity in very coarse-textured soils.
  • Improve the fertility of nutrient-poor soils. In nutrient-poor soils, biochar appears to consistently improve nutrient cycling and availability for plants. Results for other soils are mixed and depend on the biochar and soil characteristics.
  • Biochar generally improves retention of metals and PAHs.
  • Results for bacteria and pathogens are mixed, but some studies indicate increased retention, primarily associated with straining resulting from increased surface area and micropore structure in biochar-amended soils.
  • Biochar is likely to have limited effects on phosphorus retention unless specifically amended to retain phosphorus.

Possible implications for stormwater management include the following.

  1. Engineered media. Biochar incorporated into engineered media can increase water retention and infiltration. Low-nutrient biochars (e.g. wood-based versus manure- or sludge-based) produced at relatively low temperatures (less than 600oC) can improve phosphorus retention. Biochar may enhance nutrient cycling and improve fertility in media with relatively low nutrient concentrations (e.g. media mixes having lower fractions of compost).
  2. Contaminant hotspots. Biochar can be incorporated into treatment practices in areas with high or potentially high concentrations of metals and organic pollutants.
  3. Turf amendment/soil compaction. Biochar can added to turf or compacted media to improve hydraulic performance and nutrient cycling.
  4. Filtration practices. Biochar can be used alone or mixed with other components for stormwater filtration applications, including but not limited to the following:
    1. Filtration media in new treatment systems, especially roof downspout units and aboveground vaults;
    2. Supplemental or replacement media in existing treatment systems such as sand filters;
    3. Direct media addition to a stormwater storage vault ;
    4. Direct application in bioretention or swale systems;
    5. Filtration socks and slings;
    6. Hanging filters in catch basins.
  5. Underground infiltration basins and trenches. Many underground infiltration practices are constructed in very coarse textured soils that may have limited ability to retain pollutants. Biochar can reduce infiltration rates and adsorb pollutants in these systems.
  6. Climate-related effects. While not specifically a stormwater objective, biochar incorporated into stormwater practices can sequester carbon and reduce nitrous oxide emissions.

Potential biochar stormwater applications (adapted from Table 6 in Mohanty et al. (2018)).
Link to this table

Practice Potential benefits of biochar
Downspout filter boxes
  • Contaminant removal
  • Support plant growth
  • Retain water
  • Slowly release nutrients
Tree boxes
  • Contaminant removal
  • Retain water
  • Slowly release nutrients
Green roofs
  • Retain water
  • Slowly release nutrients
  • Low weight geomedia
Biofiltration
  • Contaminant removal
  • Support plant growth
  • Retain water
  • Slowly release nutrients
Constructed ponds and wetlands
  • Contaminant removal
  • Slowly release nutrients
Sand filters
  • Contaminant removal, particularly metals and organics
Level spreader/filter strips
  • Contaminant removal
  • Retain water
  • Slowly release nutrients
Swales
  • Contaminant removal
  • Retain water
  • Slowly release nutrients
Infiltration trench/basin
  • Improve hydraulic properties
  • Contaminant removal, particularly metals and organics


Further reading

Effects of feedstock and production temperature

Although the basic structure of all biochars is similar, the physical-chemical properties of biochar varies with the source material and with the temperature used in production.

Effect of feedstock (source material)

Since a wide variety of organic material can be used to produce biochar, it is not feasible to discuss each material separately. We provide the following general conclusions. Literature used to develop these conclusions is provided at the end of this section.

  • Compared to wood derived biochar, non-wood feedstock such as grass, sludge, and manure yields biochar with fewer aromatic but more aliphatic groups and higher ash content. Greater concentrations of aliphatic compounds are associated with more reactive biochar.
  • Manure- and sludge-based biochar contains higher concentration of nutrients than wood-based biochar and are therefore more likely to be a source of nutrient leaching.
  • Manure- and sludge-based biochar attenuate metals more than wood based biochars
  • Biochar parameters most affected by feedstock properties are total organic carbon, fixed carbon, and mineral elements of biochar. Feedstocks such as sawdust, wheat straw, and peanut shell have higher carbon concentrations than feedstocks such as manure, sludges, and waste paper.
  • Capacity for carbon sequestration is primarily affected by feedstock, with higher carbon compounds having greater sequestration capacity.
  • High ash biochars, such as manures and coffee husk, exhibit higher cation exchange capacity, which may increase nutrient capture, although high initial nutrient concentrations may offset this and even contribute to nutrient loss.

The International Biochar Initiative (see Appendix 6) proves a classification system for biochar feedstocks, shown below.

  • Unprocessed Feedstock Types
    • Rice hulls & straw
    • Maize cobs & stover
    • Non-maize cereal straws
    • Sugar cane bagasse & trash
    • Switch grass, Miscanthus & bamboo
    • Oil crop residues e.g., sugar beet, rapeseed
    • Leguminous crop residues e.g., soy, clover
    • Hemp residues
    • Softwoods (coniferous)
    • Hardwoods (broadleaf)
  • Processed Feedstock Types
    • Cattle manure
    • Pig manure
    • Poultry litter
    • Sheep manure
    • Horse manure
    • Paper mill sludge
    • Sewage sludge
    • Distillers grain
    • Anaerobic digester sludge
    • Biomass fraction of MSW – woody material
    • Biomass fraction of MSW – yard trimmings
    • Biomass fraction of MSW – food waste
    • Food industry waste

Literature

  • Zhaoa et al. (2013) examined cow manure, pig manure, shrimp hull, bone dregs, wastewater sludge, waste paper, sawdust, grass, wheat straw, peanut shell, Chlorella, and water weeds
  • Rimena et al., (2017) examined wood-based biochars (eucalyptus sawdust, pine bark), sugarcane bagasse, chicken manure, and coffee husk
  • Jindo et al. (2014) examined rice husk, rice straw, apple tree wood chips, and oak tree wood chips
  • Mohanty et al. (2018) provide an extensive discussion and literature review of different feedstocks and associated biochar properties
  • Gai et al. (2014) studied twelve biochars produced from wheat straw, corn straw, and peanut shell
  • International Biochar Initiative provide a general discussion of feedstocks
  • Conz et al. (2017) studied poultry litter, sugarcane straw, rice hull and sawdust
  • Jahromi and Fulcher studied biosolids and green waste, corn straw and rice straw, gasifed rice hulls, hardwood, pelleted agricultural or forestry residues, switchgrass, and timber harvest residues
  • Zhao et (2019) studied sewage sludge, agriculture biomass waste, and wood biomass waste

Effect of production temperature

Changes in the properties of biochar result from loss of volatile organic matter as temperature increases. This leads to a gradual loss in the number of functional groups on the biochar and increased aromaticity as temperature increases.

In general, the following conclusions are applicable for biochar used in stormwater applications.

  • If retention of nutrients and most pollutants is desired, biochars produced at temperatures less than 600oC should be selected
  • If the goal is to improve soil physical or hydraulic properties biochars produced at temperatures greater than 600oC should be selected

The following information comes from a literature review of the effects of production temperature on biochar

  • Biochar yield and contents of N, hydrogen and oxygen decrease as pyrolysis temperature increases from 400˚C to 700˚C
  • pH and contents of ash and carbon increase with greater pyrolysis temperature.
  • Particle size and porosity increase with greater pyrolysis temperature.
  • Hydrophobicity increases with greater pyrolysis temperature.

Literature

  • Mohanty et al., (2018)
  • Zhaoa et al., (2013)
  • Klasson, (2017)
  • Zhao et al., (2017)
  • Jindo et al., (2014)
  • Wang et al., (2018)
  • Rimena et al., (2017)
  • Lyu et al. (2016)
  • Gai et al.. (2014)
  • Conz et al. (2017)

Properties of biochar

This section includes a discussion of chemical and physical properties of biochar, and potential contaminants in biochar, .

Chemical-physical properties of biochar

The properties of biochar vary depending on the feedstock and production temperature, as discussed above. Consequently there is considerable variability in the chemical and physical properties of different biochars. The table below summarizes data from our literature review. Some conclusions from the literature are summarized below.

  • Biochar has a large surface area.
  • Cation exchange capacity (CEC) decreases as pyrolysis temperature increases. This is due to the loss of volatile organic content and associated functional groups as temperature increases. As CEC decreases, the ability of biochar to retain negatively charged chemicals, such as phosphate, decreases.
  • Non-wood vegetative feedstocks have a greater CEC than wood feedstocks. This is due to a greater percentage of aliphatic compounds and associated functional groups. Non-wood feedstocks primarily consist of grasses.
  • Sludges and manure-based biochars have high nutrient content and are thus not satisfactory for managing stormwater

Chemical and physical properties of biochar.
Link to this table

Property Range found in literature1 Median value from literature
Total phosphorus (%) 0.0061 - 1.086 0.0618
Total nitrogen (%) 1.2 - 2.4 0.88
Total potassium (%) 0.0079 - 1.367 0.181
Total carbon (%) 24.2 - 90.9 66
Total hydrogen (%) 0.67 - 4.3 2.8
Total oxygen (%) 2.69 - 28.7 16.3
pH 6.43 - 10.4 9.66
Cation exchange capacity (cmol/kg) 0.1 - 562 43.1
Surface area (m2/g 2.78 - 203 30.6
Electrical conductivity (μs/cm) 100 - 2221 231.5
Pore volume (cm3/g) 0.006 - 0.51 0.036
Total calcium (%) 0.0954 - 3.182 0.590
Total magnesium (%) 0.0297 - 0.2801 0.0587
Total copper (%) 0.0001 - 0.0078 0.00025
Total zinc (%) 0.0002 - 0.0152 0.00135
Total aluminum (%) 0.001 - 0.1929 0.0290
Total iron (%) 0.0009 - 0.2209 0.0333
Total manganese (%) 0.0001 - 0.1025 0.00145
Total sulfur (%) 0.01 - 0.44 0.05
Primary references for this data:
  • Gai et. al, 2014
  • Krishna et al., 2014
  • Yaoa et al., 2011
  • Zhaoa et al., 2013
  • Rimena et al., 2017
  • Jindo et al., 2014


Potential contaminants in biochar

Potential contaminants associated with biochar are a function of the source material and production temperature. Of greatest concern are metals and polycyclic aromatic hydrocarbons (PAHs). Oleszcuk et al. (2013) examined metal and PAH concentrations in four biochars (elephant grass, coconut shell, wicker, and wheat straw). Metal concentrations (mg/kg) in the biochars are summarized below. Tier 1 Soil Reference Values (SRVs) are included in parentheses.

  • Cd: 0.04-0.87 (25)
  • Cu: nd-3.81 (100)
  • Ni: nd-9.95 (560)
  • Pb: 20.6-23.7 (300)
  • Zn: 30.2-102.0 (8700)
  • Cr: nd-18.0 (44,000 for CrIII; 87 for CrVI)

Concentrations in biochar are well below Tier 1 SRVs.

In the study by Oleszcuk et al. (2013), total PAHs ranged from 1124.2 ng/g to 28339.1 ng/g. The dominant group of PAHs were 3-ring compounds which comprised 64.6% to 82.6% of total PAHs content. The primary compounds included, in order of abundance, phenanthrene, fluorene, anthracene, and pyrene. No 6-ring PAHs were observed. Concentrations of PAHs and other organic contaminants, such as dioxins, decreases with increasing pyrolysis temperature (Lyu et al., 2016).

In general, biochars mixed with soil do not inhibit germination or root growth. Biochar may enhance soil fertility by providing nutrients or more commonly by slowing the release of nutrients from materials such as compost. was observed. Toxic effects have been observed for some invertebrates, indicating that in sensitive environments, biochar testing is advisable (Oleszcuk et al., 2013; Getz et al., 2018; Flesch et al., 2019; Wang et al., 2017) .

Effects of biochar on physical and chemical properties of soil and bioretention media

In this section we provide information on effects of biochar on pollutant attenuation and the physical properties of soil and bioretention media.

Effect of biochar on retention and fate of phosphorus

Biochar is not likely to provide significant phosphorus retention in bioretention practices unless impregnated with cations (e.g. magnesium) during production at relatively low temperatures (e.g. less than 600oC.)

Biochar may have several properties for managing stormwater, such as increased water and pollutant retention, improving soil physical properties, and attenuating bacteria and pathogens. Biochar has been examined as a potential amendment to engineered media in bioretention or other stormwater control practices. With respect to phosphorus, information from the literature is mixed. Below are summaries from several studies.

  • Mohanty et al. (2018) observed that biochar does not absorb phosphate efficiently. Phosphorus retention can be enhanced by impregnating biochar with cations such as magnesium and zinc.
  • [https://stormwater.pca.state.mn.us/index.php?title=Biochar_and_applications_of_biochar_in_stormwater_management#References Reddy et al. (2014) found that biochar reduced influent phosphate concentrations by 47% in column experiments. Influent concentrations were 0.57 and 0.82 mg/L for unwashed and washed biochar, respectively. These concentrations are on the high end of concentrations found in urban stormwater.
  • Yaoa et al. (2011) observed retention in biochar-(sugar beet source)amended soils that were fertilized. Adsorption was dominated by magnesium oxides and maximum adsorption occurred at pH values less than 4.
  • Zhaoa et al. (2013) studied different feedstocks and observed high phosphorus concentrations in animal-based feedstocks and wastewater sludge (0.065 - 0.44%) compared to other feedstocks (0.007 - 0.07%)
  • Iqbal et al. (2015) examined leaching of phosphorus from compost (80% yard and 20% food waste) and co-composted biochar (100% fir-forest slash). They found biochar amendments did not significantly reduce the leaching of phosphorus compared to the compost only treatment. Phosphorus leached from biochar, but because phosphorus concentrations in biochar are low, this leaching contributed little total phosphorus. Leached phosphorus was primarily in the form of orthphosphate.
  • Han et al. (2018) found that addition of biochar to soil led to increased desorption of phosphorus during winter freeze-thaw cycles.
  • Soinne et al. (2014) observed no effect of biochar on phosphorus retention in a sandy and two clay soils.

Effect of biochar on retention and fate of other pollutants

Effect of biochar on soil physical and hydraulic properties

Because of a large surface area and internal porosity, biochar can affect soil physical properties (Mohanty et al., 2018; Herrera Environmental Consultants, 2015; Iqbal et al., 2015; Imhoff, 2019; Jien and Wang, 2013). These effects are most pronounced in soils with low organic matter concentration.

  • Porosity and surface area. Biochar significantly increases the porosity of most soils.
  • Water holding capcity. Biochar significantly increases the water holding capacity of soil.
  • Hydraulic conductivity. Biochar increases the hydraulic conductivity of fine- and medium-grained soils and may decrease the hydraulic conductivity of coarse-grained soils.
  • Structure. Biochar enhances aggregation in soils, thus enhancing soil structure and potentially increasing soil macroporosity.

Effects of biochar on soil fertility, plant growth, and microbial function

Effects of biochar on soil fertility, plant growth, and microbial function are affected by several factors, including feedstock, production method, soil, application rate, and biochar age. Biochar has few negative effects on fertility, plant growth and microbial function and in many cases has the potential to greatly improve soil physical, chemical and biological conditions.

DeLuca et al. (2015) provide an extensive discussion of biochar effects on nutrient cycling, fertility, and microbial function in soil. Their paper is based on an extensive review of the literature at the time of their publication. The following discussion is primarily based on information contained in this document. A list of suggested articles is provided at the end of this section.

Biochars derived from nutrient rich sources such as manure and sludge may directly provide nutrients. Most biochars, however, have limited direct contribution to the nutrient pool with the exception of potassium and ammonium. Biochar may accelerate nutrient cycling over long time scales by serving as a short-term source of highly available nutrients, which become incorporated into living biomass and labile soil organic pools. Thus biochar, while typically providing modest inputs of nutrients, enhances the bioavailability of nutrients in soil.

Because biochar typically enhances soil physical properties, including increasing water holding capacity, improving gas exchange, increasing surface area and availability of microsites for microbes, and in some cases increasing cation exchange capacity, biochar enhances microbial activity in soil. In addition, carbon in biochar provides a sorptive surface that can retain nutrients and thus minimize leaching and volatilization of nutrients.

Several studies suggest biochar amendments in soil result in increased microbial biomass, while other studies show no effect. Mixed results have also been observed for the effects of biochar on microbial community composition.

Specific conclusions from the DeLuca et al. (2015) paper include the following.

  • Biochar increases nitrogen mineralization is soils with low mineralization potential (e.g. forest soils). Wood-based biochars appear to have the greatest effect on mineralization.
  • Aged biochar shows greater accumulation of inorganic nitrogen, suggesting reduced nitrogen availability and cycling over time. Additions of fresh biochar are recommended if continued enhanced nutrient cycling is desired.
  • Low-temperature biochars have greater nitrogen immobilization due to more bioavailable carbon, but immobilization to these biochars is likely to be short-term.
  • Biochar effects on nitrogen fixation are mixed, but studies of compost-biochar mixes show a decrease in nitrogen fixation while wood-based biochars show increased fixation.
  • Phosphorus in wood-based biochars is largely immediately soluble and readily released to soil, where it becomes available to plants. However, the overall phosphorus concentration in wood-based biochars is much lower than in manure- or sludge-based biochars.
  • Application of biochar at varying rates result in an increase in available soil phosphorus, but there is little evidence this translates into increased plant uptake. This may be due to presence of abundant sites for adsorption in fresh biochars. Phosphorus decreases over time as biochar ages.
  • Laboratory studies have shown that biochar addition induces an increase in phosphatase activity which would increase the release of P from soil organic matter and organic residues.
  • Biochar effects on phosphorus are likely to be greatest in acidic soils, where addition of biochar raises pH and increases the potential adsorption to alkaline metals (calcium, potassium, magnesium).
  • Biochar effects on sulfur are uncertain, but are likely to be similar to those for phosphorus. Any enhanced adsorption or mobilization, particularly in aged biochar, will most likely be attributable to enhanced water holding capacity and surface area.

Recommended reading

  • Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A. and Sherlock, R. R. (2011) ‘Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus’, Pedobiologia, vol 54, pp309–320.
  • Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. and Amelung, W. (2012a) ‘Physical activation of biochar and its meaning for soil fertility and nutrient leaching – a greenhouse experiment’, Soil Use and Management, vol 28, pp177–184
  • Chan, K. Y. and Xu, Z. (2009) ‘Biochar: nutrient properties and their enhancement’, in J. Lehmann and S. Joseph (eds) Biochar for Environmental Management, Earthscan, London, pp 67–84
  • Clough, T. J. and Condron, L. M. (2010) ‘Biochar and the nitrogen cycle: introduction’, Journal of Environmental Quality, vol 39, pp1218–1223
  • Crutchfield, E. F., Merhaut, D. J., Mcgiffen, M. E. and Allen, E. B. (2010) ‘Effects of biochar on nutrient leaching and plant growth’, Hortscience, vol 45, S163–S163.
  • Jeffery, S., Verheijen, F. G. A., Van Der Velde, M. and Bastos, A. C. (2011) ‘A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis’, Agriculture Ecosystems and Environment, vol 144, pp175–187
  • Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. (2012) ‘Biochar-mediated changes in soil quality and plant growth in a three year field trial’, Soil Biology and Biochemistry, vol 45, pp113–124
  • Joseph, S. D., Downie, A., Munroe, P., Crosky, A. and Lehmann, J. (2007) ‘Biochar for carbon sequesteration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science’ Proceedings from Australian Combustion Symposium, University of Sydney, Australia, pp1–4
  • Laird, D., Fleming, P., Wang, B., Horton, R. and Karlen, D. (2010) ‘Biochar impact on nutrient leaching from a Midwestern agricultural soil’, Geoderma, vol 158, pp436–442
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D. (2011) ‘Biochar effects of soil biota – A review’, Soil Biology and Biochemistry, vol 43, pp1812–1836
  • Nelson, N. O., Agudelo, S. C., Yuan, W. and Gan, J. (2011) ‘Nitrogen and phosphorus availability in biochar-amended soils’, Soil Science, vol 176, pp218–226
  • Pietikäinen, J., Kiikkila, O. and Fritze, H. (2000) ‘Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus’, Oikos, vol 89, pp231–242
  • Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H. and Jones, D. L. (2012) ‘Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate’, Agriculture, Ecosystems, and Environment, vol 158, pp192–199
  • Schultz, H. and Glaser, B. (2012) ‘Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment’, Journal of Soil Science and Plant Nutrition, vol 175, pp410–422
  • Yoo, G. and Kang, H. (2010) ‘Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment’, Journal of Environmental Quality, vol 41, pp1193–1202

Standards, classification, testing, and distributors

Because of the large number of potential feedstocks, production conditions (primarily temperature), and applications for biochar, biochar classification is an active area of research. The information in this section largely comes from the International Biochar Initiative, but some additional references include the following.

  • Arbestain et al. (2015): A biochar classification system and associated test methods
  • Klassen (2017): Biochar characterization and a method for estimating biochar quality from proximate analysis results
  • Leng et al. (2019): Biochar stability assessment methods: A review
  • United States Biochar Initiative
  • Budai et al. (2013): Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability

Biochar standards

The Internation Biochar Initiative (IBI) developed Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, also referred to The Biochar Standards. These standards provide guidelines and is not a formal set of industry specifications. The goal of The Biochar Standards is to "universally and consistently define what biochar is, and to confirm that a product intended for sale or use as biochar possesses the necessary characteristics for safe use. The IBI Biochar Standards also provide common reporting requirements for biochar that will aid researchers in their ongoing efforts to link specific functions of biochar to its beneficial soil and crop impacts." The IBI also provides a certification program. Information on the standards and certification are found on International Biochar Institute's website or at the IBI's Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil.

The IBI also provides a biochar classification tool. Currently, four biochar properties are classified:

  • Carbon storage value
  • Fertilizer value (P, K, S, and Mg only)
  • Liming value
  • Particle size distribution

Distributors

Caution: The Minnesota Pollution Control Agency does not endorse specific distributors of biochar or biochar products

A list of biochar distributors is provided on the United States Biochar Initiative website (USBI). Note the USBI neither provides endorsements nor accepts liability for any particular product or technology listed.

Test methods

There is no universally accepted standard for biochar testing. The Internation Biochar Initiative (IBI) developed Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. The goals of this document are to provide "stakeholders and 5 commercial entities with standards to identify certain qualities and characteristics of biochar materials according to relevant, reliable, and measurable characteristics." The document provides information and test parameters and test nethods for three categories.

  • Test Category A – Basic Utility Properties (required)
  • Test Category B – Toxicant Assessment (required)
  • Test Category C – Advanced Analysis and Soil Enhancement Properties

The IBI document also provides information on sampling procedures, laboratory standards, timing and frequency of testing, feedstcok and production parameters, frequency of testing, reporting, and additional information for specific types of biochar. The document also provides a discussion of H:C ratios, which are used to indicate the stability of a particular biochar.

Effects of aging

Biochar undergoes transformations in soil after application, primarily through oxidation processes, typically mediated by microbes. Several researchers have studied effects of aging on biochar properties. Although researchers observe similar changes in the chemical and physical structure of biochar with aging, observed effects vary. It is therefore difficult to draw general conclusions about likely changes in the effects of biochar aging on fate of pollutants and soil hydraulic properties.

Below is a summary of some research findings.

  • Mia et al. (2019) observed an increase in carboxylic and phenolic groups, a reduction of oxonium groups and the transformation of pyridine to pyridone with oxidation. This led to increased adsorption of ammonium and reduced adsorption of phosphate. Addition of biochar derived organic matter improved phosphate retention.
  • Paetsch et al. (2018) studied effects of fresh and aged biochar on water availability and microbial parameters of a grassland soil. They observed improved water retention and microbial function with aged biochar. This was attributed to increased soil mineralization in soils with aged biochar.
  • Paetsch et al. (2018) observed increased C:N ratios as biochar aged.
  • Dong et al. (2017) observed increased specific surface area, increased carbon content, smaller average pore size, but no change in chemical structure of aged biochar versus fresh biochar.
  • Quan et al. (2020) and Spokas (2013) observed biologically-mediated changes in aged biochar. Mineralization resulted in decreased carbon content in aged biochar.
  • Hale et al. (2012) determined that aged biochar retained its ability to adsorb PAHs.
  • Cao et al. found that aged biochar had decreased carbon and nitrogen contents; reduced pH values, reduced porosity and specific surface area, and increased oxygen-containing functional groups on the surface. In general, the surface characteristics of the aged biochar varied with soil type.

Storage, handling, and field application

The following guidelines for field application of biochar are presented by Major (2010).

  • Biochar dust particles can form explosive mixtures with air in confined spaces, and there is a danger of spontaneous heating and ignition when biochar is tightly packed. This occurs because fresh biochar quickly sorbs oxygen and moisture, and these sorption processes are exothermic, thus potentially leading to high temperature and ignition of the material.
  • Volatile compounds present in certain biochar materials may also represent a fire hazard, but the amount of such compounds found in biochar can be managed by managing the pyrolysis temperature and heating rate. Certain chemicals can be added to biochar to decrease its flammability (e.g. boric acid, ferrous sulfate). The best way to prevent fire is to store and transport biochar in an atmosphere which excludes oxygen. Formulated biochar products such as mixtures with composts, manures, or the production of biochar-mineral complexes will potentially yield products which are much less flammable.
  • For fine-grained biochars, wind losses can be significant (up to 30% loss has been reported). Biochar can be moistened, although this will add to the weight of the material and increase transportation costs. If wind loss is a concern, apply biochar when winds are mild and/or during a light rain. Pelleted biochars or mixing with other materials may reduce wind loss.
  • To avoid water erosion, incorporate biochar into the soil.
  • Application rates vary depending on the biochar and the intended use of the biochar.
  • Biochar is relatively stable and recalcitrant. In some cases, biochar may improve soil conditions with time. Consequently, biochar application frequency is likely to be on the order of years.
  • Biochar can be readily mixed with other materials, such as compost.
  • The depth of biochar application varies with the intended purpose.
    • For fertility applications, locate biochar near the soil surface in the active rooting zone.
    • For moisture management, locate biochar throughout the root zone.
    • For carbon sequestration, locate biochar deeper in the soil profile to reduce the likelihood of microbial mineralization.
  • For stormwater applications, biochar can be broadcast and then incorporated into the soil. If fertility is the primary objective, banding may be utilized.
  • For turf applications, biochar can be mixed with soil (sand and topsoil) and other amendments such as compost.
  • Application rates depend on the intended use of a biochar. Field testing is recommended prior to application. Typical rates reported in the literature are 5-50 tonnes of biochar per hectare.

Sustainability

Because biochar is produced from biomass, including wastes, it is sustainable from an availability or supply standpoint. Sustainable biochar production, however, is less certain based on current economic constraints. Biochar has several potential markets and exploiting these markets is necessary for biochar production to be sustainable. Examples of specific markets include stormwater media, soil health and fertility, and carbon sequestration [Biogreen http://www.biogreen-energy.com/biochar-production/] (accessed December 10, 2019). Sustainable biochar production must also meet certain environmental and economic criteria, includign the following.

  • Biochar systems should be, at a minimum, carbon and energy neutral.
  • Biochar systems should prioritize the use of biomass residuals for biochar production.
  • Biochar systems should be safe, clean, economical, efficient, and meet or exceed environmental standards and regulatory requirements of the regions where they are deployed.
  • Biochar systems should promote or enhance ecological conditions for biodiversity at the local and landscape level.
  • Biochar systems should not pollute or degrade water resources.
  • Biochar systems should not jeopardize food security by displacing or degrading land grown for food; and should seek to complement existing local agro-ecological practices.

For more information, see the International Biochar Initiative discussion on sustainable biochar production. For a discussion of biochar sustainability, see sustainability and Certification (Vereijen et al., 2015).

References

  • Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, Cowie A, Harden S, Smillie R.. 2017. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 61:138-149. doi: 10.1016/j.wasman.2016.11.027. Epub 2016 Dec 8.
  • Budai; A. R. Zimmerman; A.L. Cowie; J.B.W. Webber; B.P. Singh; B. Glaser; C. A. Masiello; D. Andersson; F. Shields; J. Lehmann; M. Camps Arbestain; M. Williams; S. Sohi; S. Joseph. 2013. Biochar Carbon Stability Test Method: An Assessment of methods to determine biochar carbon stability. Accessed December 12, 2019.
  • Cao, T., Wenfu Chen, Tiexin Yang, Tianyi He, Zunqi Liu, Jun Meng. 2017. Surface Characterization of Aged Biochar Incubated in Different Types of Soil. BioResources. 12:3: 6366-6377
  • Conz, R., T. Abbruzzini, C.A. de Andrade, D.M.B.P. Milori. 2017. Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars. Agricultural Sciences 8:9:914-933.
  • DeLuca, T.H., M.D. MacKenzie, D.L. Jones. 2015. Biochar effects on soil nutrient transformations.
  • Ding, Y., Yu-Xue Liu, Wei-Xiang Wu, De-Zhi Shi, Min Yang, and Zhe-Ke Zhong. 2010. Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns. Water, Air, & Soil Pollution. Volume 213, Issue 1–4, pp 47–55.
  • Domingues, R.R., Paulo F. Trugilho, Carlos A. Silva, Isabel Cristina N. A. de Melo, Leoà nidas C. A. Melo, Zuy M. Magriotis, Miguel A. SaÂnchez-Monedero. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS ONE
  • Flesch, F., Pia Berger, Daniel Robles-Vargas , Gustavo Emilio Santos-Medrano, and Roberto Rico-Martínez. 2019. Characterization and Determination of the Toxicological Risk of Biochar Using Invertebrate Toxicity Tests in the State of Aguascalientes,México. Appl. Sci. 2019, 9, 1706; doi:10.3390/app9081706.
  • Gai X, Wang H, Liu J, Zhai L, Liu S, et al. (2014) Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 9(12). 19 pages. doi:10. 1371/journal.pone.0113888.
  • Hale, S.E. Kelly Hanley, Johannes Lehmann, Andrew R. Zimmerman, and Gerard Cornelissen. 2012. Effects of Chemical, Biological, and Physical Aging As Well As Soil Addition on the Sorption of Pyrene to Activated Carbon and Biochar. Environ Sci Tech.
  • Han, Y., Byoungkoo Choi, and Xiangwei Chen. 2018. Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China.
  • Hardy, B., Steven Sleutel, Joseph E. Dufey, and Jean-Thomas Cornelis. 2019. The Long-Term Effect of Biochar on Soil Microbial Abundance, Activity and Community Structure Is Overwritten by Land Management. Frontiers Environ. Sci. 110:7:1-14. DOI: 10.3389/fenvs.2019.00110.
  • Hoffman-Krull, K.H. 2019. WHAT’S BIOCHAR? HOW TO STABILIZE CARBON IN YOUR SOIL. Rodale Institute.
  • Internation Biochar Initiative. Biochar Feedstocks. Accessed December 12, 2019.
  • Iqbal, H., Manuel Garcia-Perez, Markus Flury. 2015. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems Science of the Total Environment 521–522 (2015) 37–45
  • Jahromi, N.B., and A. Fulcher. What is Biochar and How Different Biochars Can Improve Your Crops. University of Tennessee Extension. Publication W829. Accessed 12/12/2019.
  • Jien, Shih-Hao, and Chien-Sheng Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena. 110:225-233
  • Jindo, K., H. Mizumoto3, Y. Sawada, M. A. Sanchez-Monedero1, and T. Sonoki. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11, 6613–6621.
  • Kasak, K., Jaak Truu, Ivika Ostonen, Jürgen Sarjas, Kristjan Oopkaup, Päärn Paiste, Margit Kõiv-Vainik, Ülo Mander, Marika Truu. 2018. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands Science of the Total Environment 639:67–74
  • Klasson, T.K. 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy. 96:50-58.
  • Laird, D., Pierce Flemming, Baiqun Wang, Robert Horton, Douglas Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Agronomy Publications. Iowa State University. 9 p.
  • Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones PD, Codling G, Giesy JP. 2016. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environ Pollut. 218:1-7. doi: 10.1016/j.envpol.2016.08.014.
  • Major, J. 2010. Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems.
  • Mensah, A.K., and Kwame Agyei Frimpong. 2018. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. International Journal of Agronomy. Volume 2018, 8 pages. https://doi.org/10.1155/2018/6837404
  • Mohanty, S.K., Renan Valenca, Alexander W. Berger, Iris K.M. Yu, Xinni Xiong, Trenton M. Saunders, Daniel C.W. Tsang. 2018. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment Science of the Total Environment, 625: 1644-1658.
  • Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W. 2018. Toxicity screening of biochar-mineral composites using germination tests. Chemosphere. 207:91-100. doi:10.1016/j.chemosphere.2018.05.042.
  • Nabiul Afrooz, A.R.M., Ana K. Pitol, Dianna Kitt, and Alexandria B. Boehm. 2018. Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters. Environ Sci: Water Res and Tech. 12:
  • Nguyen, N.T. 2015. Adsorption Of Phosphorus From Wastewater Onto Biochar: Batch And Fixed-bed Column Studies
  • Oleszczuk, P., Izabela Jo´sko, Marcin Ku´smierz. 2013. Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials 260 (2013) 375– 382.
  • Quan G, Fan Q, Zimmerman AR, Sun J, Cui L, Wang H, Gao B, Yan J. 2020. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. J Hazard Mater. 2020 Jan 15;382:121071. doi: 10.1016/j.jhazmat.2019.121071
  • Rawat, J., J. Saxena, and P. Sanwal. 2018. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In: Biochar - An Imperative Amendment for Soil and the Environment. DOI: 10.5772/intechopen.82151
  • Reddy, K.R., Tao Xie, and Sara Dastgheibi. 2014. Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal Environ Eng. 140:12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000872
  • Shamim Mia, Feike A. Dijkstra, and Balwant Singh. 2017. Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium. Environ. Sci. Technol. 51:8359−8367. DOI: 10.1021/acs.est.7b00647
  • Soinne, H., Jarkko Hovi, PriitTammeorg, EilaTurtola. 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma. Volumes 219–220, May 2014, Pages 162-167.
  • Spears, S. 2018. What is Biochar? Regeneration International.
  • Spokas, K.A. 2013. Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy (2013) 5, 165–176, doi: 10.1111/gcbb.12005
  • Ulrich, B.A., Megan Loehnert and Christopher P. Higgins. 2017. Improved contaminant removal in vegetated stormwater biofilters amended with biochar Environmental Science: Water Research & Technology. 4:
  • Wang, K., Na Peng, Guining Lu, Zhi Dang, 2018. Effects of Pyrolysis Temperature and Holding Time on Physicochemical Properties of Swine-Manure-Derived Biochar. Waste and Biomass Valorization. 1-12 DOI: 10.1007/s12649-018-0435-2
  • Yang, F., Yue Zhou, Weiming Liu, Wenzhu Tang, Jun Meng, Wenfu Chen, and Xianzhen Li. 2019. Article Strain-Specific Effects of Biochar and Its Water-Soluble Compounds on Bacterial Growth. Appl. Sci. 9(16), 3209; https://doi.org/10.3390/app9163209.
  • Yao, Y., Bin Gao, Mandu Inyang, Andrew R. Zimmerman, Xinde Cao, Pratap Pullammanappallil, Liuyan Yang. 2011 Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential. Bioresource Technology. 102:6273-6278
  • Yaoa, Y., Bin Gaoa, Mandu Inyanga, Andrew R. Zimmermanb, Xinde Caoc, Pratap Pullammanappallila, Liuyan Yangd. 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials 190:501–507
  • Yuan-Ying Wang, Xiang-Rong Jing, Ling-Li Li, Wu-Jun Liu, Zhong-Hua Tong, Hong Jiang. 2017. Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms. ACS Sustainable Chem. Eng. 2017, 5, 1, 481-488. https://doi.org/10.1021/acssuschemeng.6b01859
  • Zhang, M., Muhammad Riaz, Lin Zhang, Zeinab El-desouki, and Cuncang Jiang. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils. 2019. Frontiers Microbio. 12:10:1321. doi: 10.3389/fmicb.2019.01321
  • Zhao, J.J. Xin-Jie Shen, Xavier Domene, Josep-Maria Alcañiz, Xing Liao and Cristina Palet. 2019. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports 9. Article 9869.
  • Zhao, Shi-Xiang, Na Ta and Xu-Dong Wang 2017. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material Energies, 10:1293; doi:10.3390/en10091293
  • Zhaoa, L., Xinde Caoa, Ondˇrej Maˇsekb, Andrew Zimmerman. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256– 257:1– 9
  • Zheng, H., Zhenyu Wang, Xia Deng, Stephen Herbert, Baoshan Xing. 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, Volume 206:32-39