m |
m (→References) |
||
(68 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | [[File:Turbid runoff.JPG|300px|thumb|alt=image turbid runoff|<font size=3>Suspended sediment in stormwater runoff</font size>]] | |
+ | |||
+ | Because of the expense and difficulty of monitoring stormwater runoff, we often rely on published information to estimate pollutant loading associated with runoff. Models or other tools are often used to predict pollutant loading. These models and tools require information on the pollutant concentration in runoff. For example, the Simple Method, which is commonly used to estimate pollutant loading, utilizes the following equation | ||
+ | |||
+ | <math>L = 0.227 P P_j R_v C A</math> | ||
+ | |||
+ | where | ||
+ | :L = Load of a pollutant in pounds per year; | ||
+ | :P = Rainfall depth per year (inches); | ||
+ | :P<sub>j</sub> = Fraction of rainfall events that produce runoff; | ||
+ | :R<sub>v</sub> = <span title="The runoff coefficient (C) is a dimensionless coefficient relating the amount of runoff to the amount of precipitation received. It is a larger value for areas with low infiltration and high runoff (pavement, steep gradient), and lower for permeable, well vegetated areas (forest, flat land)."> [https://stormwater.pca.state.mn.us/index.php?title=Runoff_coefficients_for_5_to_10_year_storms '''Runoff coefficient''']</span>, which expresses the fraction of rainfall which is converted into runoff. Rv = 0.05 + 0.009(I); | ||
+ | :I = Site imperviousness (i.e., I = 75 if site is 75% impervious); | ||
+ | :C = <span title="A flow-weighted mean is the mean of a quantity after it is weighted proportional to a corresponding flow rate."> '''[https://ncwqr.files.wordpress.com/2017/06/d-time-weighted-and-flow-weighted-mean-concentrations.pdf Flow-weighted mean concentration]'''</span> of the pollutant in urban runoff (mg/l); and | ||
+ | :A = Area of the development site (acres). | ||
+ | |||
+ | This page provides a discussion of pollutant concentrations in stormwater runoff, including a review of literature and links recommended values to use. | ||
+ | |||
+ | ==Factors affecting actual and measured storm concentrations== | ||
+ | The actual concentration of a pollutant in stormwater runoff varies with several factors, including but not limited to | ||
+ | *land use, | ||
+ | *time between runoff events, | ||
+ | *duration and intensity of runoff, | ||
+ | *characteristics of the pollutant, | ||
+ | *season, | ||
+ | *extent of exposed soils, such as with construction sites, and | ||
+ | *extent of <span title="a subset of impervious cover, which is directly connected to a drainage system or a water body via continuous impervious surfaces."> '''connected impervious surfaces'''</span>. | ||
+ | |||
+ | In addition, the measured concentration varies with factors related to measurement, including but not limited to | ||
+ | *type of sampling equipment and sample collection, | ||
+ | *location of sampling, | ||
+ | *frequency of sampling, | ||
+ | *laboratory analysis, and | ||
+ | *data analysis. | ||
+ | |||
+ | This variability presents challenges in estimating pollutant loading, but having accurate estimates of pollutant concentrations is necessary to accurately calculate pollutant loading and reductions in loading associated with implementation of stormwater practices and to accurately select and design appropriate practices to treat runoff. | ||
+ | |||
+ | ==Event mean concentrations== | ||
+ | In the absence of monitoring data for a specific study or location, we often use <span title="The average pollutant concentration for a given stormwater event, expressed in units of mass per volume (e.g., mg/L)"> '''event mean concentrations'''</span> (emc). The emc represents the average pollutant concentration for a given stormwater event, expressed in units of mass per volume (e.g., mg/L). Given the number of factors affecting pollutant concentration, determining an appropriate emc is challenging. | ||
+ | |||
+ | Despite challenges in accurately determining emcs, they are widely used in stormwater applications. Emcs are used in many stormwater water quality <span title="a tool to simulate natural processes and estimate the expected volume, rate, or quality of stormwater"> [https://stormwater.pca.state.mn.us/index.php?title=Introduction_to_stormwater_modeling '''models''']</span> and calculations of pollutant loading. They are therefore fundamental to understanding pollutant loads and how to address reducing pollutant loads in stormwater runoff. | ||
+ | |||
+ | ==Calculating emcs== | ||
+ | Emcs should represent the <span title="A flow-weighted mean is the mean of a quantity after it is weighted proportional to a corresponding flow rate."> '''[https://ncwqr.files.wordpress.com/2017/06/d-time-weighted-and-flow-weighted-mean-concentrations.pdf flow-weighted mean concentration]'''</span> of a given pollutant parameter during storm events. The simplest way to calculate and emc is therefore to divide the total mass of a pollutant by the total runoff volume. Emcs can also be calculated as the sum, over multiple discrete time intervals within an event, of volume times the concentration for the time interval, divided by the total volume for the event | ||
+ | |||
+ | <math> emc = (∫^t_0 C_tQ_td_t) / (∫^t_0 Q_td_t) ≅ (Σ C_tQ_tΔt) / (ΣQ_tΔt) </math> | ||
+ | |||
+ | where C<sub>t</sub> and Q<sub>t</sub> are the concentration and flow volume over a discrete time interval d<sub>t</sub> (Δt). | ||
+ | |||
+ | [https://stormwaterbook.safl.umn.edu/data-analysis/monitoring/pollutant-removal/analysis-individual-storm-events Erickson et al.] provide detailed discussion and examples for calculating pollutant loading from stormwater runoff. The emc calculated for a specific event is a function of the sampling method. Erickson et al. discuss the following methods for sampling. | ||
+ | |||
+ | [[File:EMC example 2.png|400px|thumb|alt=image for emcs|<font size=3>Example of how emcs can be calculated using concentration and flow data taken at discrete time intervals. In the top example, assume all time intervals are 30. In the lower graph, intervals 1 and 2 from the top graph are combined and Q and C average, while the remaining intervals are left at 30. The emc for the top graph is 69.1 mg/L and 76.0 mg/L for the lower graph, even though the data are the same.</font size>]] | ||
+ | |||
+ | *Flow-weighted discrete samples: "When samples are collected based on a user-specified constant incremental volume of discharge (e.g., every 1000, 2000, or 5000 gallons) that passes the sampler, the samples are defined as flow-weighted. Each flow-weighted sample is assumed to represent the average pollutant concentration for the entire incremental volume of water to which it corresponds. Each discrete sample is stored in an individual container, and the contents of each container are analyzed separately." | ||
+ | *Flow-weighted composite samples: "Flow-weighted composite samples are collected every time a user-specified constant volume of flow passes the sampler and all samples are stored in a single container. To determine pollutant concentration, an <span title="a portion of a larger whole, especially a sample taken for chemical analysis or other treatment."> '''aliquot'''</span> is collected from the composite sample, and the concentration is assumed to represent that of the entire composite sample." | ||
+ | *Time-weighted discrete samples: "Time-weighted discrete samples are collected at a user-specified, constant time interval (e.g., 30 minutes), and each sample is stored in a separate container and analyzed separately. Because the magnitude of the discharge during a natural storm event varies over time, each time-weighted sample does not represent a constant volume of discharge." | ||
+ | *Time-weighted composite samples: "Time-weighted composite samples are collected at equal time increments, and all samples are stored in a single container. ... Time-weighted composite sampling is not recommended." | ||
+ | *Discrete grab samples: "A grab sample is a single sample collected at one location over a relatively short time period, typically sampling the entire cross-section of water. Discharge must be accurately and continuously measured and the time of each grab sample must be recorded to assess pollutant removal performance. Discrete samples are stored in individual containers, and the contents of each container are analyzed separately." | ||
+ | *Composite grab samples: "Composite grab samples are typically collected at variable time and volume increments and stored in a single sample storage container. Composite grab sampling is not recommended." | ||
+ | |||
+ | The sampling method affects the resulting calculation of emc. For example, in the adjacent image, emcs were calculated for the same runoff event. In the top portion of the image, sampling occurred every 30 minutes and the overall emc is 69.1 mg/L. In the lower portion of the image, the first two time intervals were combined and Q and C averaged over the 60 minute time interval, while the remaining time intervals were 30 minutes each. The overall emc is 76.0 mg/L. The difference is a result of a bias toward higher concentrations in the early portion of the runoff event for the lower graph. This tendency toward higher pollutant concentrations in the early part of a runoff event is called the <span title="the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm"> '''first flush'''</span>. | ||
+ | |||
+ | [https://fortress.wa.gov/ecy/publications/documents/1810026.pdf Washington State] developed standard operating procedures for measuring pollutant loads, including emcs. They include procedures for addressing seasonality. | ||
+ | |||
+ | ==Factors affecting emcs== | ||
+ | Many factors affect the emc. The most important factors and how to address them are dicussed below. | ||
+ | |||
+ | <div style="float:right"> | ||
+ | <table class="infobox" style="border:3px; border-style:solid; border-color:#FF0000; text-align: right; width: 300px; font-size: 100%"> | ||
+ | <tr> | ||
+ | <th><center><font size=3>'''What is the first flush?'''</font size></center></th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>First flush is a phenomenon in which pollutant concentrations in stormwater runoff are greater in the early portion of a runoff event. First flush is common for relatively uniform land use settings, for winter and early spring runoff events, and for runoff events during fall leaf-drop. During dry periods between runoff events, pollutants build-up on impermeable surfaces. For <span title="A rainfall distribution characterized by short duration, high intensity rainfall"> '''[https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/NEHhydrology/ch4_Sept2015draft.pdf Type 2 rain distribution]'''</span>, initial rain intensity is low and increases through a storm before decreasing near the end of the storm. The initial runoff is therefore highly concentrated with pollutants that have accumulated on impermeable surfaces. As runoff volume increases during an event and pollutants become more resistant to being washed off, concentrations decrease and typically reach steady state. First flush is not universally applicable to stormwater runoff, however. For example, if higher pollutant buildup on impermeable surfaces occurs in upper portions of a watershed, as might occur in an area with variable land uses, the peak concentration may be delayed as those higher pollutant loads take time to reach a receiving point. Similarly, some pollutants may be resistant to transport in early stages of an event. In other situations, concentrations in runoff may be uniform throughout an event, particularly if rainfall intensities are uniform and pollutants are soluble (e.g. chloride). | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | [[File:EMC example 3.png|300px|thumb|center|alt=schematic of different concentrations in runoff|<font size=3>Schematic illustrating different runoff concentration profiles. Events 1 and 3 show delayed peak concentrations, Event 2 shows a strong first flush effect, and Event 4 a steady concentration profile. See text for discussion.</font size>]] | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </div> | ||
+ | |||
+ | ===Land use=== | ||
+ | {{alert|Using an emc for the specific land use being considered is highly recommended. See [[Stormwater event mean concentrations and pollutant loading/export rates for different land uses]] for emcs for different pollutants and land uses.|alert-warning}} | ||
+ | |||
+ | [[File:Land use image.gif|300px|thumb|alt=image of land uses|<font size=3>Photos of different land uses</font size>]] | ||
+ | |||
+ | Because of the variability in emcs across different land uses, it is beneficial to consider different land uses when calculating pollutant loads. Compositing emcs across land uses is generally not recommended. | ||
+ | |||
+ | Some generalizations about pollutant loading as a function of land use include the following. | ||
+ | *Commercial, industrial, and transportation land use typically have higher percentages of impervious and directly <span title="A subset of impervious cover, which is directly connected to a drainage system or a water body via continuous impervious surfaces."> '''connected impervious'''</span> surface, as shown in the accompanying table summarizing <span title="The SCS curve number method is a widely used method for determining the approximate amount of runoff from a rainfall even in a particular area. The curve number is based on the area's hydrologic soil group, land use , treatment and hydrologic condition."> '''curve numbers'''</span> for different land uses. This results in more efficient delivery of pollutants and runoff compared to other land uses. Consequently, we expect higher emcs from these land uses for smaller runoff events and when pollutant buildup on impermeable surfaces is greater, and lower emcs for larger runoff events with greater rainfall intensities as a result of dilution. | ||
+ | *Nutrient (phosphorus, nitrogen) concentrations are greater in residential areas and other land uses that contribute significant amounts of <span title="carbon-based compounds, originally derived from living organisms"> '''organic material'''</span> to impermeable surfaces. Dissolved fractions also comprise a greater percent of the total load for these pollutants when the source of the nutrient is organic material. | ||
+ | *Concentrations of metals increase as road density and traffic volume increase. | ||
+ | *Concentrations of petroleum-related compounds and <span title="a class of chemicals that occur naturally in coal, crude oil, and gasoline. They also are produced when coal, oil, gas, wood, garbage, and tobacco are burned."> '''polycyclic aromatic hydrocarbons'''</span> (PAHs) increase as road density and traffic volume increase. | ||
+ | *Concentrations of total suspended solids (TSS) may be similar across different land uses, but the characteristics of the TSS varies. Organic fractions make up a larger percent of TSS in residential areas and other land uses where there are sources of organic material to impermeable surfaces, while inorganic fractions (e.g. sand, silt) comprise the majority of TSS in settings with low inputs of organic material. | ||
+ | *Bacteria concentrations are typically greater in residential areas due to greater inputs from domestic animals (e.g. dogs), birds, and other animals. Studies also suggest irrigated lawns and leaves/organic material on impermeable surfaces contribute to bacteria loads. | ||
+ | *In cold climates where deicers are applied, chloride concentrations are a function of deicer application rates. Chloride concentrations are therefore highly variable in areas where deicers are applied. Also note that within a land use receiving high inputs of chloride-deicers, chloride emcs vary with season. | ||
+ | *<span title="The 5 day biochemical oxygen demand, or BOD5, is water quality parameter. BOD5 measures the quantity of biodegradable organic matter contained in water. This biodegradable organic matter is evaluated using the oxygen consumed by the microorganisms involved in natural purification mechanisms."> '''Oxygen demand'''</span> is typically related to the amount of organic carbon in runoff. Thus, land uses with greater inputs of organic material (e.g. residential) will have greater oxygen demand. | ||
+ | *Concentrations of several organic chemicals, such as pesticides and chlorinated compounds, varies. Factors affecting concentrations include industrial sources, presence of contaminated sites, historic use of these materials, and atmospheric deposition. | ||
+ | *Although the potential for nutrient and bacteria loads is greater in lower density residential areas, the lower amount of directly connected impervious surface typically results in lower emcs for lower density residential land use. | ||
+ | *Pollutant concentrations in open, forested, and park areas are lower, primarily due to reduced impervious surface. | ||
+ | *There is limited information on many of the newer chemicals, such as commercial-consumer compounds, veterinary and human pharmaceuticals, lifestyle and personal care compounds, and others. These chemicals, generically labeled as contaminants of emerging concern (CEC), have variable sources, including industry, sediment, and atmospheric deposition. For more information, see [https://www.researchgate.net/profile/Richard_Kiesling/publication/326916617_Contaminants_of_emerging_concern_in_urban_stormwater_Spatiotemporal_patterns_and_removal_by_iron-enhanced_sand_filters_IESFs/links/5b85452192851c1e12372f0f/Contaminants-of-emerging-concern-in-urban-stormwater-Spatiotemporal-patterns-and-removal-by-iron-enhanced-sand-filters-IESFs.pdf Fairbairn et al.] (2018), [https://setac.onlinelibrary.wiley.com/doi/abs/10.1002/ieam.1702 Maruya] (2015), [https://pubs.acs.org/doi/10.1021/acs.est.9b02867 Masoner et al.] (2019), and [https://www.sciencedirect.com/science/article/pii/S0048969718336465 Kiesling et al.] (2019). | ||
+ | |||
+ | {{:Curve numbers for antecedent mositure condition 2}} | ||
+ | |||
+ | {{:Curve numbers for urban and agricultural areas}} | ||
+ | |||
+ | ===Effects of season=== | ||
+ | For most pollutants, there are few studies of seasonal effects on emcs. The most extensive study is that of [https://www.esf.edu/EFB/mitchell/Brezonik&Stadelmann2002.pdf Brezonik and Stadelmann] (2002). The limited information suggests the following. | ||
+ | *Ranges (variability) of emcs are largest in spring | ||
+ | *Median concentrations of many chemicals is higher in the initial spring flush | ||
+ | *For individual pollutants, the following are observed. | ||
+ | **TSS concentrations are highest in winter and decrease throughout the year | ||
+ | **Total phosphorus concentrations are highest in winter and fall | ||
+ | **Dissolved and soluble reactive phosphorus concentrations are highest in winter | ||
+ | **Chemical oxygen demand is highest in winter | ||
+ | **Inorganic nitrogen concentrations are highest in winter | ||
+ | **Organic nitrogen concentrations are highest in spring | ||
+ | **Bacteria concentrations are highest in summer | ||
+ | **Chloride concentrations are highest in winter | ||
+ | |||
+ | ===Effects of rainfall characteristics=== | ||
+ | Several studies indicate rainfall characteristics are very important when assessing pollutant loads for discrete events or discrete time periods. When assessing loads on an annual basis, these factors are less important. | ||
+ | |||
+ | Rainfall factors affecting emcs include the following. | ||
+ | *Duration between rain events. As the duration between events increases, pollutants build up on impervious surfaces, resulting in increased pollutant concentrations when runoff occurs. The first flush effect becomes more pronounced as the interval between runoff events increases. | ||
+ | *Short duration, higher intensity rain events result in higher concentrations of solids, pollutants associated with solids, oil, grease, and other relatively soluble organic pollutants | ||
+ | *Longer duration, lower intensity rain events result in higher concentrations of dissolved nutrients (phosphorus and nitrogen), as these typically result from leaching from organic material | ||
+ | *Greater runoff volumes result in lower emcs over an entire runoff event, as a result of dilution | ||
+ | |||
+ | ===Effects of connected impervious surface and watershed characteristics=== | ||
+ | First flush effects are greatest in small watersheds with a high degree of connected impervious surfaces. | ||
+ | |||
+ | ==Event mean concentrations for different pollutants== | ||
+ | Tabled values of recommended emcs are found at the following page - [[Stormwater event mean concentrations and pollutant loading/export rates for different land uses]]. For some pollutants, we developed individual pages with a literature review and discussion. | ||
+ | *[[Event mean concentrations of total and dissolved phosphorus in stormwater runoff]] | ||
+ | *[[Event mean concentrations of total suspended solids in stormwater runoff]] | ||
+ | |||
+ | ==References== | ||
+ | *Acharya, A., and T. Piechota. 2010. [https://www.researchgate.net/publication/267200251_Characterization_of_First_Flush_Phenomenon_in_an_Urban_Stormwater_Runoff_A_Case_Study_of_Flamingo_Tropicana_Watershed_in_Las_Vegas_Valley Characterization of First Flush Phenomenon in an Urban Stormwater Runoff: A Case Study of Flamingo Tropicana Watershed in Las Vegas Valley]. World Environmental and Water Resources Congress 2010: Challenges of Change. American Society of Civil Engineers. p 3365-3375. 10.1061/41114(371)347. | ||
+ | *Baldys III, S., T.H. Raines, B.L. Mansfield, and J.T. Sandlin. 1998. ''Urban Stormwater Quality, Event-Mean Concentrations, and Estimates of Stormwater Pollutant Loads, Dallas-Fort Worth Area, Texas, 1992–93''. U.S. Geological Survey Water-Resources Investigations Report 98–4158. | ||
+ | *Bannerman, Roger T., Andrew D. Legg, and Steven R. Greb. 1996. [https://pdfs.semanticscholar.org/850e/ccf19feb2157c170ebdada940d30f9426711.pdf Quality Of Wisconsin Stormwater, 1989-94]. U.S. Geological Survey. Open-File Report 96-458. | ||
+ | *Bannerman, R.T., D. W.Owens,R. B.Dodds, and N. J. Hornewer. 1993. [https://dnr.wi.gov/topic/stormwater/documents/sources.pdf Sources of Pollution in Wisconsin Stormwater]. Wac Sci tech 28:3-5. pp. 241-259. | ||
+ | *Bartley, Rebecca, and William Speirs. 2010. [https://www.researchgate.net/publication/51616467_A_review_of_sediment_and_nutrient_concentration_data_from_Australia_for_use_in_catchment_water_quality_models A review of sediment and nutrient concentration data from Australia for use in catchment water quality models]. eWater Cooperative Research Centre Technical Report. | ||
+ | *Brezonik PL, Stadelmann TH.. 2002. [https://www.esf.edu/EFB/mitchell/Brezonik&Stadelmann2002.pdf Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA]. Water Res. Apr;36(7):1743-57. DOI: 10.1016/s0043-1354(01)00375-x | ||
+ | *Erickson, A.J., P.T. Weiss, J.S. Gulliver, R.M. Hozalski. [https://stormwaterbook.safl.umn.edu/data-analysis/monitoring/pollutant-removal/analysis-individual-storm-events Analysis of individual storm events, Stormwater Treatment: Assessment and Maintenance]. Accessed December 31, 2019. | ||
+ | *Gong, Y., X. Liang, X. Li, J. Li, X. Fang, and R. Song. 2016. [https://www.mdpi.com/2073-4441/8/7/278/htm Influence of Rainfall Characteristics on Total Suspended Solids in Urban Runoff: A Case Study in Beijing, China]. Water 2016, 8(7), 278; https://doi.org/10.3390/w8070278 | ||
+ | *Hallberg, M., G. Renman. 2008. [http://www.pjoes.com/Suspended-Solids-Concentration-in-Highway-r-nRunoff-during-Summer-Conditions,88100,0,2.html Suspended Solids Concentration in Highway Runoff during Summer Conditions]. Pol. J. Environ. Stud. 17(2):237–241. | ||
+ | *Jung, Jae-Woon, Ha-Na Park, Kwang-Sik Yoon, Dong-Ho Choi, Byung-Jin Lim. 2013. ''Event mean concentrations (EMCs) and first flush characteristics of runoff from a public park in Korea''. Journal of the Korean Society for Applied Biological Chemistry. October 2013, Volume 56, Issue 5, pp 597–604. | ||
+ | *Kim, Lee-Hyung. 2003. [http://eeer.org/upload/eer-8-4-163-1.pdf Determination of event mean concentrations and first flush criteria in urban runoff]. Environ. Eng. Res. 8:4:163-176. | ||
+ | *Li D, Wan J, Ma Y, Wang Y, Huang M, Chen Y. 2015. [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118776 Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City]. PLoS ONE 10(3): e0118776. doi:10.1371/journal.pone.0118776 | ||
+ | *Maniquiz, Marla C. , Soyoung Lee, Lee-Hyung Kim. 2010. ''Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables''. Jour Environ. Sci. 22:6:946-852. | ||
+ | *Maniquiz, Marla C., Jiyeon Choi, Soyoung Lee, Hye Jin Cho, Lee-Hyung Kim. 2010. ''Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice''. Environmental Engineering Research. 15:215-223. | ||
+ | *Pan X, Jones KD. 2012. ''Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database''. Water Sci Technol. 65(6):1076-80. doi: 10.2166/wst.2012.946. | ||
+ | *Schiff, Kenneth C., and Liesl L. Tiefenthaler. 2011. ''Seasonal flushing of pollutant concentrations and loads in urban stormwater''. Jour. Amer. Water Works Assoc. 47:1:136-143 | ||
+ | *Schiff, Kenneth C., and Liesl L. Tiefenthaler. 2016. [https://www.mdpi.com/2073-4441/8/8/320 Effects of Rainfall Intensity and Duration on the First Flush from Parking Lots]. Water. 8(8), 320. https://doi.org/10.3390/w8080320 | ||
+ | *Stein, Eric D., Liesl L. Tiefenthaler and Kenneth C. Schiff. 2008. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2008AnnualReport/AR08_015_027.pdf Comparison of stormwater pollutant loading by land use type]. Southern California Coastal Water Research Project, AR08-015-027. | ||
+ | *Stein, Eric D., Liesl L. Tiefenthaler and Kenneth C. Schiff. 2007. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/510_pollutant_loading.pdf SOURCES, PATTERNS AND MECHANISMS OF STORM WATER POLLUTANT LOADING FROM WATERSHEDS AND LAND USES OF THE GREATER LOS ANGELES AREA, CALIFORNIA, USA]. Technical Report 510. | ||
+ | *Stenstrom, M.K., and M. Kayhanian. 2005. [https://www.researchgate.net/publication/288208061_First_flush_phenomenon_characterization First Flush Phenomenon Characterization]. Prepared for: California Department of Transportation. 81 p. | ||
+ | *Tiefenthaler, L.L., K. C. Schiff, and M. K. Leecaster. 1997. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1999AnnualReport/04_ar04.pdf Temporal variability patterns of stormwater concentrations in urban stormwater runoff]. | ||
+ | *University of Wisconsin at Milwaukee. [https://www.mmsd.com/application/files/6214/8192/3796/1103620Phosphorus20Speciation.pdf Phosphorus Speciation and Loads in Stormwater and CSOs of the MMSD Service Area (2000 – 2008) Final Report]: February, 2011 | ||
+ | *Wang, Shumin, Qiang Hea, Hainan Aia, Zhentao Wanga, and Qianqian Zhang. 2013. ''Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing''. Journal of Environmental Sciences. Volume 25, Issue 3, Pages 502-510. https://doi.org/10.1016/S1001-0742(11)61032-2. | ||
+ | *Washington District Department of the Environment. 2014. [http://dcstormwaterplan.org/wp-content/uploads/AppD_EMCs_FinalCBA_12222014.pdf Selection of Event Mean Concentrations (EMCs)]. | ||
+ | *Yang, Yun-Ya, and Gurpal S. Toor. 2018. [https://www.nature.com/articles/s41598-018-29857-x runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in urban watersheds]. Scientific Reports. 8:1-10 | ||
+ | |||
+ | ==Related pages== | ||
+ | *[[Stormwater event mean concentrations and pollutant loading/export rates for different land uses]] | ||
+ | *[[Total Suspended Solids (TSS) in stormwater]] | ||
+ | *[[Event mean concentrations of total and dissolved phosphorus in stormwater runoff]] | ||
+ | *[[Event mean concentrations of total suspended solids in stormwater runoff]] | ||
+ | *[[Bacteria in stormwater]] | ||
+ | |||
+ | <noinclude> | ||
+ | [[Category:Level 2 - Pollutants/Concentrations, export, loads]] | ||
+ | </noinclude> |
Because of the expense and difficulty of monitoring stormwater runoff, we often rely on published information to estimate pollutant loading associated with runoff. Models or other tools are often used to predict pollutant loading. These models and tools require information on the pollutant concentration in runoff. For example, the Simple Method, which is commonly used to estimate pollutant loading, utilizes the following equation
\(L = 0.227 P P_j R_v C A\)
where
This page provides a discussion of pollutant concentrations in stormwater runoff, including a review of literature and links recommended values to use.
The actual concentration of a pollutant in stormwater runoff varies with several factors, including but not limited to
In addition, the measured concentration varies with factors related to measurement, including but not limited to
This variability presents challenges in estimating pollutant loading, but having accurate estimates of pollutant concentrations is necessary to accurately calculate pollutant loading and reductions in loading associated with implementation of stormwater practices and to accurately select and design appropriate practices to treat runoff.
In the absence of monitoring data for a specific study or location, we often use event mean concentrations (emc). The emc represents the average pollutant concentration for a given stormwater event, expressed in units of mass per volume (e.g., mg/L). Given the number of factors affecting pollutant concentration, determining an appropriate emc is challenging.
Despite challenges in accurately determining emcs, they are widely used in stormwater applications. Emcs are used in many stormwater water quality models and calculations of pollutant loading. They are therefore fundamental to understanding pollutant loads and how to address reducing pollutant loads in stormwater runoff.
Emcs should represent the flow-weighted mean concentration of a given pollutant parameter during storm events. The simplest way to calculate and emc is therefore to divide the total mass of a pollutant by the total runoff volume. Emcs can also be calculated as the sum, over multiple discrete time intervals within an event, of volume times the concentration for the time interval, divided by the total volume for the event
\( emc = (∫^t_0 C_tQ_td_t) / (∫^t_0 Q_td_t) ≅ (Σ C_tQ_tΔt) / (ΣQ_tΔt) \)
where Ct and Qt are the concentration and flow volume over a discrete time interval dt (Δt).
Erickson et al. provide detailed discussion and examples for calculating pollutant loading from stormwater runoff. The emc calculated for a specific event is a function of the sampling method. Erickson et al. discuss the following methods for sampling.
The sampling method affects the resulting calculation of emc. For example, in the adjacent image, emcs were calculated for the same runoff event. In the top portion of the image, sampling occurred every 30 minutes and the overall emc is 69.1 mg/L. In the lower portion of the image, the first two time intervals were combined and Q and C averaged over the 60 minute time interval, while the remaining time intervals were 30 minutes each. The overall emc is 76.0 mg/L. The difference is a result of a bias toward higher concentrations in the early portion of the runoff event for the lower graph. This tendency toward higher pollutant concentrations in the early part of a runoff event is called the first flush.
Washington State developed standard operating procedures for measuring pollutant loads, including emcs. They include procedures for addressing seasonality.
Many factors affect the emc. The most important factors and how to address them are dicussed below.
First flush is a phenomenon in which pollutant concentrations in stormwater runoff are greater in the early portion of a runoff event. First flush is common for relatively uniform land use settings, for winter and early spring runoff events, and for runoff events during fall leaf-drop. During dry periods between runoff events, pollutants build-up on impermeable surfaces. For Type 2 rain distribution, initial rain intensity is low and increases through a storm before decreasing near the end of the storm. The initial runoff is therefore highly concentrated with pollutants that have accumulated on impermeable surfaces. As runoff volume increases during an event and pollutants become more resistant to being washed off, concentrations decrease and typically reach steady state. First flush is not universally applicable to stormwater runoff, however. For example, if higher pollutant buildup on impermeable surfaces occurs in upper portions of a watershed, as might occur in an area with variable land uses, the peak concentration may be delayed as those higher pollutant loads take time to reach a receiving point. Similarly, some pollutants may be resistant to transport in early stages of an event. In other situations, concentrations in runoff may be uniform throughout an event, particularly if rainfall intensities are uniform and pollutants are soluble (e.g. chloride). |
Because of the variability in emcs across different land uses, it is beneficial to consider different land uses when calculating pollutant loads. Compositing emcs across land uses is generally not recommended.
Some generalizations about pollutant loading as a function of land use include the following.
Curve numbers for antecedent moisture condition II (Source USDA-NRCS).
Link to this table
A | B | C | D | |
---|---|---|---|---|
Meadow - good condition | 30 | 58 | 72 | 78 |
Forest | ||||
Poor | 45 | 66 | 77 | 83 |
Fair | 36 | 60 | 73 | 79 |
Good | 30 | 55 | 70 | 77 |
Open space | ||||
Poor | 68 | 79 | 86 | 89 |
Fair | 49 | 69 | 79 | 84 |
Good | 39 | 61 | 74 | 80 |
Commercial 85% impervious | 89 | 92 | 94 | 95 |
Industrial 72% impervious | 81 | 88 | 91 | 93 |
Residential | ||||
1/8 acre lots (65% impervious) | 77 | 85 | 90 | 92 |
1/4 acre lots (38% impervious) | 61 | 75 | 83 | 87 |
1/2 acre lots (25% impervious) | 54 | 70 | 80 | 85 |
1 acre lots (20% impervious) | 51 | 68 | 79 | 84 |
Impervious areas | 98 | 98 | 98 | 98 |
Roads (including right of way) | ||||
Paved | 83 | 89 | 92 | 93 |
Gravel | 76 | 85 | 89 | 91 |
Dirt | 72 | 82 | 87 | 89 |
Row crops | ||||
Straight row - good | 67 | 78 | 85 | 89 |
Contoured row - good | 65 | 75 | 82 | 86 |
Pasture - good | 39 | 61 | 74 | 80 |
Open water | 99 | 99 | 99 | 99 |
Curve numbers for urban and agricultural areas. Source: [USDA Urban Hydrology for Small Watersheds - TR-55. USDA Urban Hydrology for Small Watersheds - TR-55].
Link to this table
Cover type and hydrologic condition | Soil Group A | Soil Group B | Soil Group C | Soil Group D |
---|---|---|---|---|
Open space poor condition (<50% cover) | 68 | 79 | 86 | 89 |
Open space average condition (50-75% cover) | 49 | 69 | 79 | 84 |
Open space good condition (>75% cover) | 39 | 61 | 74 | 80 |
Impervious surfaces | 98 | 98 | 98 | 98 |
Commercial (85% impervious) | 89 | 92 | 94 | 95 |
Industrial (72% impervious) | 81 | 88 | 91 | 93 |
Residential (65% impervious) | 77 | 85 | 90 | 92 |
Residential (30% impervious) | 57 | 72 | 81 | 86 |
Residential (12% impervious) | 46 | 65 | 77 | 82 |
Pervious, no vegetation (newly graded) | 77 | 86 | 91 | 94 |
Fallow with residue cover | 74-76 | 83-85 | 88-90 | 90-93 |
Row crop, no residue | 67-72 | 78-81 | 85-88 | 89-91 |
Row crop with residue | 64-71 | 75-80 | 82-87 | 85-90 |
Pasture, good condition | 39 | 61 | 74 | 80 |
Pasture, poor condition | 68 | 79 | 86 | 89 |
Meadow | 30 | 58 | 71 | 78 |
Woods, good condition | 32 | 58 | 72 | 79 |
Woods, poor condition | 57 | 73 | 82 | 86 |
For most pollutants, there are few studies of seasonal effects on emcs. The most extensive study is that of Brezonik and Stadelmann (2002). The limited information suggests the following.
Several studies indicate rainfall characteristics are very important when assessing pollutant loads for discrete events or discrete time periods. When assessing loads on an annual basis, these factors are less important.
Rainfall factors affecting emcs include the following.
First flush effects are greatest in small watersheds with a high degree of connected impervious surfaces.
Tabled values of recommended emcs are found at the following page - Stormwater event mean concentrations and pollutant loading/export rates for different land uses. For some pollutants, we developed individual pages with a literature review and discussion.
This page was last edited on 2 February 2023, at 17:36.