m |
m |
||
Line 47: | Line 47: | ||
“Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP, plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously. | “Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP, plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously. | ||
− | ===Volume | + | ===Volume reduction capacity of BMP (V) and comparison with performance goal=== |
− | The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP” is calculated using BMP inputs provided by the user. For this BMP the volume reduction credit is equal to the amount of water that can be instantaneously captured by the BMP in the storage device and in the engineered media below the | + | The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The [https://stormwater.pca.state.mn.us/index.php?title=MIDS_Calculator_terminology “Volume reduction capacity of BMP”] is calculated using BMP inputs provided by the user. For this BMP the volume reduction credit is equal to the amount of water that can be instantaneously captured by the BMP in the storage device and in the engineered media below the outflow. The capture volume (V) is therefore equal to the following |
<math> | <math> | ||
Line 60: | Line 60: | ||
::D<sub>M</sub> is the depth of the engineered media in ft | ::D<sub>M</sub> is the depth of the engineered media in ft | ||
− | The “Volume of retention provided by BMP” is the amount of volume credit the BMP provides toward the performance goal. This value is equal to the lesser of the “Volume reduction capacity of BMP” calculated using the above method or the “Required treatment volume”. This check makes sure that the BMP is not getting more credit than necessary to meet the performance goal. For example, if the BMP is oversized the user will only receive credit for the “Required treatment volume” routed to the BMP, which corresponds with meeting the performance goal for the site . | + | The [https://stormwater.pca.state.mn.us/index.php?title=MIDS_Calculator_terminology “Volume of retention provided by BMP”] is the amount of volume credit the BMP provides toward the performance goal. This value is equal to the lesser of the [https://stormwater.pca.state.mn.us/index.php?title=MIDS_Calculator_terminology “Volume reduction capacity of BMP”] calculated using the above method or the [https://stormwater.pca.state.mn.us/index.php?title=MIDS_Calculator_terminology “Required treatment volume”]. This check makes sure that the BMP is not getting more credit than necessary to meet the performance goal. For example, if the BMP is oversized the user will only receive credit for the “Required treatment volume” routed to the BMP, which corresponds with meeting the performance goal for the site . |
===Pollutant Reduction=== | ===Pollutant Reduction=== |
For an underground infiltration system, all stormwater captured below the outflow pipe in the underground pipe/storage device or in the underlying engineered media by the BMP is infiltrated into the underlying soil between rain events. All pollutants in the infiltrated water are credited as being reduced. Pollutants in the stormwater that bypasses the best management practice (BMP), including pollutants in water discharged through the outflow pipe, are not reduced.
For underground infiltration systems, the user must input the following parameters to calculate the volume and pollutant load reductions associated with the BMP.
The following are requirements or recommendations for inputs into the MIDS calculator. If the following are not met, an error message will inform the user to change the input to meet the requirement.
\( DDT_{calc}=(D_O+D_M)/(I_R/ 12) \)
“Required treatment volume,” or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP, plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously.
The volume reduction achieved by a BMP compares the capacity of the BMP to the required treatment volume. The “Volume reduction capacity of BMP” is calculated using BMP inputs provided by the user. For this BMP the volume reduction credit is equal to the amount of water that can be instantaneously captured by the BMP in the storage device and in the engineered media below the outflow. The capture volume (V) is therefore equal to the following
\( V= V_P+[A_M*n*D_M ] \)
The “Volume of retention provided by BMP” is the amount of volume credit the BMP provides toward the performance goal. This value is equal to the lesser of the “Volume reduction capacity of BMP” calculated using the above method or the “Required treatment volume”. This check makes sure that the BMP is not getting more credit than necessary to meet the performance goal. For example, if the BMP is oversized the user will only receive credit for the “Required treatment volume” routed to the BMP, which corresponds with meeting the performance goal for the site .
Pollutant load reductions are calculated on an annual basis. Therefore, the first step in calculating annual pollutant load reductions is converting the “Volume reduction capacity of BMP,” which is an instantaneous volume reduction, to an annual volume reduction percentage. This is accomplished through the use of performance curves developed from multiple modeling scenarios. The performance curves use the “Volume reduction capacity of BMP”, the infiltration rate of the underlying soils, the contributing watershed percent impervious area, and the size of the contributing watershed to calculate a percent annual volume reduction. While oversizing a BMP above the “Required treatment volume” will not provide additional credit towards the performance goal volume, it may provide additional pollutant reduction.
A 100 percent removal is credited for all pollutants associated with the reduced volume of stormwater since these pollutants are either attenuated within the media or pass into the underlying soil with infiltrating water. Pollutants in the stormwater that bypasses the BMP through overflow are not reduced. A schematic of the removal rates can be seen in the sidebar.
NOTE: The user can modify event mean concentrations (EMCs) on the Site Information tab in the calculator. Default concentrations are 54.5 milligrams per liter for total suspended solids (TSS) and 0.3 milligrams per liter for total phosphorus (particulate plus dissolved). The calculator will notify the user if the default is changed. Changing the default EMC will result in changes to the total pounds of pollutant reduced.
A underground infiltration BMP can be routed to any other BMP, except for a green roof, stormwater disconnection (impervious disconnection), and a swale side slope or any BMP that would cause stormwater to be rerouted back to the infiltration basin already in the stormwater runoff treatment sequence. All BMPs can be routed to the underground infiltration, except for a swale side slope.
The following general assumptions apply in calculating the credit for a underground infiltration system. If these assumptions are not followed, the volume and pollutant reduction credits cannot be applied.