m |
m (→References) |
||
Line 159: | Line 159: | ||
*Bartley, Rebecca, and William Speirs. 2010. [https://ewater.org.au/uploads/files/Water%20quality%20review_Bartley%20and%20Speirs_Final.pdf A review of sediment and nutrient concentration data from Australia for use in catchment water quality models]. eWater Cooperative Research Centre Technical Report. | *Bartley, Rebecca, and William Speirs. 2010. [https://ewater.org.au/uploads/files/Water%20quality%20review_Bartley%20and%20Speirs_Final.pdf A review of sediment and nutrient concentration data from Australia for use in catchment water quality models]. eWater Cooperative Research Centre Technical Report. | ||
*Brezonik PL, Stadelmann TH.. 2002. [https://www.esf.edu/EFB/mitchell/Brezonik&Stadelmann2002.pdf Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA]. Water Res. Apr;36(7):1743-57. DOI: 10.1016/s0043-1354(01)00375-x | *Brezonik PL, Stadelmann TH.. 2002. [https://www.esf.edu/EFB/mitchell/Brezonik&Stadelmann2002.pdf Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA]. Water Res. Apr;36(7):1743-57. DOI: 10.1016/s0043-1354(01)00375-x | ||
+ | *Erickson, A.J., P.T. Weiss, J.S. Gulliver, R.M. Hozalski. [http://stormwaterbook.safl.umn.edu/pollutant-removal/analysis-individual-storm-events Analysis of individual storm events, Stormwater Treatment: Assessment and Maintenance]. Accessed December 31, 2019. | ||
+ | *Gong, Y., X. Liang, X. Li, J. Li, X. Fang, and R. Song. 2016. [https://www.mdpi.com/2073-4441/8/7/278/htm Influence of Rainfall Characteristics on Total Suspended Solids in Urban Runoff: A Case Study in Beijing, China]. Water 2016, 8(7), 278; https://doi.org/10.3390/w8070278 | ||
+ | *Hallberg, M., G. Renman. 2008. [http://www.pjoes.com/Suspended-Solids-Concentration-in-Highway-r-nRunoff-during-Summer-Conditions,88100,0,2.html Suspended Solids Concentration in Highway Runoff during Summer Conditions]. Pol. J. Environ. Stud. 17(2):237–241. | ||
*Jung, Jae-Woon, Ha-Na Park, Kwang-Sik Yoon, Dong-Ho Choi, Byung-Jin Lim. 2013. [https://link.springer.com/article/10.1007/s13765-013-3128-3 Event mean concentrations (EMCs) and first flush characteristics of runoff from a public park in Korea]. Journal of the Korean Society for Applied Biological Chemistry. October 2013, Volume 56, Issue 5, pp 597–604. | *Jung, Jae-Woon, Ha-Na Park, Kwang-Sik Yoon, Dong-Ho Choi, Byung-Jin Lim. 2013. [https://link.springer.com/article/10.1007/s13765-013-3128-3 Event mean concentrations (EMCs) and first flush characteristics of runoff from a public park in Korea]. Journal of the Korean Society for Applied Biological Chemistry. October 2013, Volume 56, Issue 5, pp 597–604. | ||
*Kim, Lee-Hyung. 2003. [http://eeer.org/upload/eer-8-4-163-1.pdf Determination of event mean concentrations and first flush criteria in urban runoff]. Environ. Eng. Res. 8:4:163-176. | *Kim, Lee-Hyung. 2003. [http://eeer.org/upload/eer-8-4-163-1.pdf Determination of event mean concentrations and first flush criteria in urban runoff]. Environ. Eng. Res. 8:4:163-176. | ||
+ | *Li D, Wan J, Ma Y, Wang Y, Huang M, Chen Y. 2015. [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118776 Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City]. PLoS ONE 10(3): e0118776. doi:10.1371/journal.pone.0118776 | ||
*Maniquiz, Marla C. , Soyoung Lee, Lee-Hyung Kim. 2010. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. Jour Environ. Sci. 22:6:946-852. | *Maniquiz, Marla C. , Soyoung Lee, Lee-Hyung Kim. 2010. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. Jour Environ. Sci. 22:6:946-852. | ||
*Maniquiz, Marla C., Jiyeon Choi, Soyoung Lee, Hye Jin Cho, Lee-Hyung Kim. 2010. [https://pdfs.semanticscholar.org/e24b/670b01617980cf9458bcf868c8feaebded74.pdf Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice]. Environmental Engineering Research. 15:215-223. | *Maniquiz, Marla C., Jiyeon Choi, Soyoung Lee, Hye Jin Cho, Lee-Hyung Kim. 2010. [https://pdfs.semanticscholar.org/e24b/670b01617980cf9458bcf868c8feaebded74.pdf Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice]. Environmental Engineering Research. 15:215-223. | ||
*Pan X, Jones KD. 2012. [https://watermark.silverchair.com/1076.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAg4wggIKBgkqhkiG9w0BBwagggH7MIIB9wIBADCCAfAGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMLHtL0TgjAGht8fqmAgEQgIIBwUMowFdEbGwUU0U6Grns7odipRlBlGWEJ_4O4e20hHld5X5e3xfmXgZbuV7eF8bIJEtdlzU8XMfOys83AaKgFXU1_UXKLthtE6PaYALaMcW49rcKwcg_24CUNu3YQgk1tnppulHOzvatpn10FUVlRrJp4vsshFsLFKyKR5N7P4RZbpz3CN03RCXEHfPlGW8mODFO0-Oq_up_C6Yjf7y-IdSVjYyJ5ms0UzUahkAsAL75DTEK5dqwmLhGc3zDqvvgCZqEoq73c8aMmGHiugcqMXNiKs0B5_BlaKOzLVGeaxCzwVI7g6tglqgOKSlImay5QcPLjEuSzqSBkqrmEdaehHCsSbmWUgf2daMFBakt49HTOHj1IIVqxeps3z8BpgEZHKV3M4XNhOxiDt2S8rvSu0SnbKul6gSCvgVsIuScYrgfEU8upepmDex21aLUu5ZgYmwuhIkH8zbF7wlSv411aBc044qCctNLwDTzmbKERqZMoehwHIUGtjnOvA8ZgnQhtNGpbYsrP19IK8b73ASfVJ5S0Rcp-MKqbjZ1wqYyPTQjp4Lj52exmnZ1dZH70hO3FhZJTDlQ6Qkgop6Kr-AP23Bs Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database]. Water Sci Technol. 65(6):1076-80. doi: 10.2166/wst.2012.946. | *Pan X, Jones KD. 2012. [https://watermark.silverchair.com/1076.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAg4wggIKBgkqhkiG9w0BBwagggH7MIIB9wIBADCCAfAGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMLHtL0TgjAGht8fqmAgEQgIIBwUMowFdEbGwUU0U6Grns7odipRlBlGWEJ_4O4e20hHld5X5e3xfmXgZbuV7eF8bIJEtdlzU8XMfOys83AaKgFXU1_UXKLthtE6PaYALaMcW49rcKwcg_24CUNu3YQgk1tnppulHOzvatpn10FUVlRrJp4vsshFsLFKyKR5N7P4RZbpz3CN03RCXEHfPlGW8mODFO0-Oq_up_C6Yjf7y-IdSVjYyJ5ms0UzUahkAsAL75DTEK5dqwmLhGc3zDqvvgCZqEoq73c8aMmGHiugcqMXNiKs0B5_BlaKOzLVGeaxCzwVI7g6tglqgOKSlImay5QcPLjEuSzqSBkqrmEdaehHCsSbmWUgf2daMFBakt49HTOHj1IIVqxeps3z8BpgEZHKV3M4XNhOxiDt2S8rvSu0SnbKul6gSCvgVsIuScYrgfEU8upepmDex21aLUu5ZgYmwuhIkH8zbF7wlSv411aBc044qCctNLwDTzmbKERqZMoehwHIUGtjnOvA8ZgnQhtNGpbYsrP19IK8b73ASfVJ5S0Rcp-MKqbjZ1wqYyPTQjp4Lj52exmnZ1dZH70hO3FhZJTDlQ6Qkgop6Kr-AP23Bs Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database]. Water Sci Technol. 65(6):1076-80. doi: 10.2166/wst.2012.946. | ||
− | *Schiff, Kenneth C., and Liesl L. Tiefenthaler. 2011. [https://onlinelibrary.wiley.com/doi/full/10.1111/j.1752-1688.2010.00497.x Seasonal flushing of pollutant concentrations and loads in urban stormwater]. Jour. Amer. Water Works Assoc. 47:1:136-143. | + | *Schiff, Kenneth C., and Liesl L. Tiefenthaler. 2011. [https://onlinelibrary.wiley.com/doi/full/10.1111/j.1752-1688.2010.00497.x Seasonal flushing of pollutant concentrations and loads in urban stormwater]. Jour. Amer. Water Works Assoc. 47:1:136-143 |
+ | *Schiff, Kenneth C., and Liesl L. Tiefenthaler. 2016. [https://www.mdpi.com/2073-4441/8/8/320 Effects of Rainfall Intensity and Duration on the First Flush from Parking Lots]. Water. 8(8), 320. https://doi.org/10.3390/w8080320 | ||
+ | *Stein, Eric D., Liesl L. Tiefenthaler and Kenneth C. Schiff. 2008. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2008AnnualReport/AR08_015_027.pdf Comparison of stormwater pollutant loading by land use type]. Southern California Coastal Water Research Project, AR08-015-027. | ||
+ | *Stein, Eric D., Liesl L. Tiefenthaler and Kenneth C. Schiff. 2007. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/510_pollutant_loading.pdf SOURCES, PATTERNS AND MECHANISMS OF STORM WATER POLLUTANT LOADING FROM WATERSHEDS AND LAND USES OF THE GREATER LOS ANGELES AREA, CALIFORNIA, USA]. Technical Report 510. | ||
+ | *Stenstrom, M.K., and M. Kayhanian. 2005. [https://www.researchgate.net/publication/288208061_First_flush_phenomenon_characterization First Flush Phenomenon Characterization]. Prepared for: California Department of Transportation. 81 p. | ||
*Tiefenthaler, L.L., K. C. Schiff, and M. K. Leecaster. 1997. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1999AnnualReport/04_ar04.pdf Temporal variability patterns of stormwater concentrations in urban stormwater runoff]. | *Tiefenthaler, L.L., K. C. Schiff, and M. K. Leecaster. 1997. [http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1999AnnualReport/04_ar04.pdf Temporal variability patterns of stormwater concentrations in urban stormwater runoff]. | ||
+ | *University of Wisconsin at Milwaukee. [https://www.mmsd.com/application/files/6214/8192/3796/1103620Phosphorus20Speciation.pdf Phosphorus Speciation and Loads in Stormwater and CSOs of the MMSD Service Area (2000 – 2008) Final Report]: February, 2011 | ||
+ | *Wang, Shumin, Qiang Hea, Hainan Aia, Zhentao Wanga, and Qianqian Zhang. 2013. [https://www.sciencedirect.com/science/article/pii/S1001074211610322 Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing]. Journal of Environmental Sciences. Volume 25, Issue 3, Pages 502-510. https://doi.org/10.1016/S1001-0742(11)61032-2. | ||
+ | *Washington District Department of the Environment. 2014. [http://dcstormwaterplan.org/wp-content/uploads/AppD_EMCs_FinalCBA_12222014.pdf Selection of Event Mean Concentrations (EMCs)]. | ||
+ | *Yang, Yun-Ya, and Gurpal S. Toor. 2018. [https://www.nature.com/articles/s41598-018-29857-x runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in urban watersheds]. Scientific Reports. 8:1-10 | ||
==Related pages== | ==Related pages== |
Because of the expense and difficulty of monitoring stormwater runoff, we often rely on published information to estimate pollutant loading associated with runoff. Models or other tools are often used to predict pollutant loading. These models and tools require information on the pollutant concentration in runoff. For example, the Simple Method, which is commonly used to estimate pollutant loading, utilizes the following equation
\(L = 0.227 P P_j R_v C A\)
where
This page provides a discussion of pollutant concentrations in stormwater runoff, including a review of literature and recommended values to use
The actual concentration of a pollutant in stormwater runoff varies with several factors, including but not limited to
In addition, the measured concentration varies with these factors and factors related to measurement, including but not limited to
This variability presents challenges in estimating pollutant loading, but having accurate estimates of pollutant concentrations is necessary to accurately calculate pollutant loading and reductions in loading associated with implementation of stormwater practices and to accurately select and design appropriate practices to treat runoff.
In the absence of monitoring data for a specific study or location, we often use event mean concentrations (emc). The emc represents the average pollutant concentration for a given stormwater event, expressed in units of mass per volume (e.g., mg/L). Given the number of factors affecting pollutant concentration, determining an appropriate emc is challenging.
Despite challenges in accurately determining emcs, they are widely used in stormwater applications. Emcs are used in many stormwater water quality models and calculations of pollutant loading. They are therefore fundamental to understanding pollutant loads and how to address reducing pollutant loads in stormwater runoff.
Emcs should represent the flow proportional concentration of a given pollutant parameter during storm events. The simplest way to calculate and emc is therefore to divide the total mass of a pollutant by the total runoff volume. Emcs can also be calculated as the sum, over multiple discrete time intervals within an event, of volume times the concentration for the time interval, divided by the total volume for the event
\( emc = (∫^t_0 C_tQ_td_t) / (∫^t_0 Q_td_t) ≅ (Σ C_tQ_tΔt) / (ΣQ_tΔt) \)
where Ct and Qt are the concentration and flow volume over a discrete time interval dt (Δt).
Erickson et al. provide detailed discussion and examples for calculating pollutant loading from stormwater runoff. The emc calculated for a specific event is a function of the sampling method. Erickson et al. discuss the following methods for sampling.
The sampling method affects the resulting calculation of emc. For example, in the adjacent image, emcs were calculated for the same runoff event. In the top portion of the image, sampling occurred every 30 minutes and the overall emc is 69.1 mg/L. In the lower portion of the image, the first two time intrvals were combined and Q and C averaged over the 60 minute time interval, while the remaining time intervals were 30 minutes each. The overall emc is 76.0 mg/L. The difference is a result of a bias toward higher concentrations in the early portion of the runoff event for the lower graph. This tendency toward higher pollutant concentrations in the early part of a runoff event is called the first flush.
Washington State developed standard operating procedures for measuring pollutant loads, including emcs. They include procedures for addressing seasonality.
Many factors affect the emc. The most important factors and how to address them are dicussed below.
First flush is a phenomenon in which pollutant concentrations in stormwater runoff are greater in the early portion of a runoff event. First flush is common for relatively uniform land use settings, for winter and early spring runoff events, and for runoff events during fall leaf-drop. During dry periods between runoff events, pollutants build-up on impermeable surfaces. For Type 2 rain events, initial rain intensity is low and increases through a storm before decreasing near the end of the storm. The initial runoff is therefore highly concentrated with pollutants that have accumulated on impermeable surfaces. As runoff volume increases during an event and pollutants become more resistant to being washed off, concentrations decrease and typically reach steady state. First flush is not universally applicable to stormwater runoff, however. For example, if higher pollutant buildup on impermeable surfaces occurs in upper portions of a watershed, as might occur in an area with variable land uses, the peak concentration may be delayed as those higher pollutant loads take time to reach a receiving point. Similarly, some pollutants may be resistant to transport in early stages of an event. In other situations, concentrations in runoff may be uniform throughout an event, particularly if rainfall intensities are uniform and pollutants are soluble (e.g. chloride). |
Because of the variability in emcs across different land uses, it is beneficial to consider different land uses when calculating pollutant loads. Compositing emcs across land uses is generally not recommended.
Some generalizations about pollutant loading as a function of land use include the following.
Curve numbers for antecedent moisture condition II (Source USDA-NRCS).
Link to this table
A | B | C | D | |
---|---|---|---|---|
Meadow - good condition | 30 | 58 | 72 | 78 |
Forest | ||||
Poor | 45 | 66 | 77 | 83 |
Fair | 36 | 60 | 73 | 79 |
Good | 30 | 55 | 70 | 77 |
Open space | ||||
Poor | 68 | 79 | 86 | 89 |
Fair | 49 | 69 | 79 | 84 |
Good | 39 | 61 | 74 | 80 |
Commercial 85% impervious | 89 | 92 | 94 | 95 |
Industrial 72% impervious | 81 | 88 | 91 | 93 |
Residential | ||||
1/8 acre lots (65% impervious) | 77 | 85 | 90 | 92 |
1/4 acre lots (38% impervious) | 61 | 75 | 83 | 87 |
1/2 acre lots (25% impervious) | 54 | 70 | 80 | 85 |
1 acre lots (20% impervious) | 51 | 68 | 79 | 84 |
Impervious areas | 98 | 98 | 98 | 98 |
Roads (including right of way) | ||||
Paved | 83 | 89 | 92 | 93 |
Gravel | 76 | 85 | 89 | 91 |
Dirt | 72 | 82 | 87 | 89 |
Row crops | ||||
Straight row - good | 67 | 78 | 85 | 89 |
Contoured row - good | 65 | 75 | 82 | 86 |
Pasture - good | 39 | 61 | 74 | 80 |
Open water | 99 | 99 | 99 | 99 |
For most pollutants, there are few studies of seasonal effects on emcs. The most extensive study is that of Brezonik and Stadelmann (2002). The limited information suggests the following.
Several studies indicate rainfall characteristics are very important when assessing pollutant loads for discrete events or discrete time periods. When assessing loads on an annual basis, these factors are less important.
Rainfall factors affecting emcs include the following.
The following watershed factors, including imperviousness, affect pollutant emcs.
Tabled values of recommended emcs are found at the following page - Stormwater event mean concentrations and pollutant loading/export rates for different land uses. For some pollutants, we developed individual pages with a literature review and discussion.