(Created page with "= = {{alert|Site in development|alert-under-construction}} Soils affect stormwater and stormwater management in two ways. *Soil is a source of sediment and associated polluta...")
 
Line 42: Line 42:
 
*[[Sediment control practices - Buffer zones]]
 
*[[Sediment control practices - Buffer zones]]
 
*[[Construction stormwater treatment - dewatering, including chemical treatment and sediment filtration]]
 
*[[Construction stormwater treatment - dewatering, including chemical treatment and sediment filtration]]
 +
 +
==Implementation of stormwater practices==

Revision as of 21:18, 22 June 2021

This site is currently undergoing revision. For more information, open this link.
Site in development

Soils affect stormwater and stormwater management in two ways.

  • Soil is a source of sediment and associated pollutants (e.g. metals, organic compounds) for stormwater runoff.
  • Soil affects the types of stormwater management practices that can be implemented at a site (e.g. potential for infiltration, vegetation)

Soil erosion

Soil erosion and sediment runoff to waterways are significant problems in Minnesota. According to the Minnesota Pollution Control Agency (MPCA 2016), approximately 30 percent of the state’s rivers and streams are impaired by sediment. Poorly managed construction sites can be substantial sediment sources to these surface waters. Up to 100 tons of sediment per acre can be lost annually from unmanaged construction sites (EPA 1999).

The Universal Soil Loss Equation (USLE) and it's update, the Revised Universal Soil Loss Equation (RUSLE) are used to predict sheet and rill erosion. Soil loss, typically expressed on an annual basis in tons per acre, is affected by rainfall characteristics, soil erodibility, slope length and gradient, soil cover, and erosion control practices. Soil erodibility is the intrinsic susceptibility of a soil to erosion by runoff and raindrop impact. In general, the following affect soil erodibility.

  • Increasing amounts of soil organic matter result in decreasing values of K
  • Soil type effect on K: silt > silt loam = fine sand > loam > clay loam > clay > coarse sand. Note that wet clay soils that have expanded have increased risk.
  • Coarse sand particles are too large to transport
  • Clays are cohesive with good soil structure and it is difficult to dislodge soil particles
  • Silts and fine sands are not cohesive and are easily transported
  • Texture is the principal factor affecting Kfact, but structure, organic matter, and permeability also contribute
  • The soil erodibility factor ranges in value from 0.02 to 0.69.

For more information on soil erodibility, link here.

Managing soil loss involves erosion protection and sediment control, with erosion protection being preferred.

Erosion protection practices

Sediment control

Implementation of stormwater practices