m |
m |
||
Line 20: | Line 20: | ||
! Benefit !! Effectiveness !! Notes | ! Benefit !! Effectiveness !! Notes | ||
|- | |- | ||
− | | Water quality || <font size=4><center>&# | + | | Water quality || <font size=4><center>◔</center></font size> || Primary benefit is retention of sediment and associated pollutants; nutrient cycling in properly functioning wetlands; may export phosphorus if not designed and maintained properly. |
|- | |- | ||
| Water quantity/supply || <font size=4><center>◔</center></font size> || Rate control, flooding benefit. | | Water quantity/supply || <font size=4><center>◔</center></font size> || Rate control, flooding benefit. | ||
Line 30: | Line 30: | ||
| Air quality || <font size=4><center>◔</center></font size> || | | Air quality || <font size=4><center>◔</center></font size> || | ||
|- | |- | ||
− | | Habitat improvement || <font size= | + | | Habitat improvement || <font size=4><center>◕</center></font size> || Use of perennial vegetation and certain media mixes promote invertebrate communities. |
|- | |- | ||
| Community livability || <font size=4><center>◑</center></font size> || Aesthetically pleasing and can be incorporated into a wide range of land use settings. | | Community livability || <font size=4><center>◑</center></font size> || Aesthetically pleasing and can be incorporated into a wide range of land use settings. |
Dry swales, sometimes called grass swales, are similar to bioretention cells but are configured as shallow, linear channels. They typically have vegetative cover such as turf or native perennial grasses. Dry swales may be constructed as filtration or infiltration practices, depending on soils. If soils are highly permeable (A or B soils), runoff infiltrates into underlying soils. In less permeable soils, runoff is treated by engineered soil media and flows into an underdrain, which conveys treated runoff back to the conveyance system further downstream. Check dams incorporated into the swale design allow water to pool up and infiltrate into the underlying soil or engineered media, thus increasing the volume of water treated.
Wet swales occur when the water table is located very close to the surface or water does not readily drain out of the swale. A wet swale acts as a very long and linear shallow biofiltration or linear wetland treatment system. Wet swales do not provide volume reduction and have limited treatment capability. Incorporation of check dams into the design allows treatment of a portion or all of the water quality volume within a series of cells created by the check dams. Wet swales planted with emergent wetland plant species provide improved pollutant removal. Wet swales may be used as pretreatment practices. Wet swales are commonly used for drainage areas less than 5 acres in size.
Stormwater step pools are defined by its design features that address higher energy flows due to more dramatic slopes than dry or wet swales. Using a series of pools, riffle grade control, native vegetation and a sand seepage filter bed, flow velocities are reduced, treated, and, where applicable, infiltrated. to shallow groundwater. The physical characteristics of the stormwater step pools are similar to Rosgen A or B stream classification types, where “bedform occurs as a step/pool, cascading channel which often stores large amounts of sediment in the pools associated with debris dams” (Rosgen, 1996). These structures feature surface/subsurface runoff storage seams and an energy dissipation design that is aimed at attenuating the flow to a desired level through energy and hydraulic power equivalency principles (Anne Arundel County, 2009). Stormwater step pools are designed with a wide variety of native plant species depending on the hydraulic conditions and expected post-flow soil moisture at any given point within the stormwater step pool.
Green infrastructure (GI) encompasses a wide array of practices, including stormwater management. Green stormwater infrastructure (GSI) encompasses a variety of practices primarily designed for managing stormwater runoff but that provide additional benefits such as habitat or aesthetic value.
There is no universal definition of GI or GSI (link here fore more information). Consequently, the terms are often interchanged, leading to confusion and misinterpretation. GSI practices are designed to function as stormwater practices first (e.g. flood control, treatment of runoff, volume control), but they can provide additional benefits. Though designed for stormwater function, GSI practices, where appropriate, should be designed to deliver multiple benefits (often termed "multiple stacked benefits". For more information on green infrastructure, ecosystem services, and sustainability, link to Multiple benefits of green infrastructure and role of green infrastructure in sustainability and ecosystem services.
Benefit | Effectiveness | Notes |
---|---|---|
Water quality | Primary benefit is retention of sediment and associated pollutants; nutrient cycling in properly functioning wetlands; may export phosphorus if not designed and maintained properly. | |
Water quantity/supply | Rate control, flooding benefit. | |
Energy savings | ||
Climate resiliency | Provides some rate control. Impacts on carbon sequestration are uncertain. | |
Air quality | ||
Habitat improvement | Use of perennial vegetation and certain media mixes promote invertebrate communities. | |
Community livability | Aesthetically pleasing and can be incorporated into a wide range of land use settings. | |
Health benefits | ||
Economic savings | Generally provide cost savings vs. conventional practices over the life of the practice. | |
Macroscale benefits | Individual practices are typically microscale, but multiple practices, when incorporated into a landscape design, provide macroscale benefits such as wildlife corridors. | |
Level of benefit: ◯ - none; ◔ - small; ◑ - moderate; ◕ - large; ● - very high |
Maximizing specific green infrastructure (GI) benefits of constructed ponds requires design considerations prior to constructing the practice. While site limitations cannot always be overcome, the following recommendations maximize the GI benefit of constructed ponds.