Dfairbairn (talk | contribs) |
Dfairbairn (talk | contribs) |
||
Line 65: | Line 65: | ||
===Volume Reduction=== | ===Volume Reduction=== | ||
− | The total estimated ''Volume reduction capacity of BMP [V]'' is the sum of infiltration and ET occurring in the biofiltration BMP, and is calculated with user-provided inputs. For this BMP, the location of the underdrain determines how the infiltration component is calculated. If the underdrain is located at the bottom of the BMP, then the infiltration credit is based on infiltration into the bottom of the BMP (V<sub>inf<sub>b</sub></sub>) and side slopes of the BMP above the underdrain (V<sub>inf<sub>s</sub></sub>). In contrast, if the underdrain is elevated above the bottom of the BMP, then the infiltration credit is based on the volume capacity of the bioretention base (V<sub>BB</sub>) between the underdrain and the native soils, and the side slopes of the BMP above the underdrain (V<sub>inf<sub>s</sub></sub>). Both types of underdrain configurations can receive credit for ET in the media above the underdrain (V<sub>ET</sub>). A biofiltration system with an elevated underdrain thus behaves as a dual system, with the portion above the drain acting like a biofiltration system with an underdrain at the bottom and the portion below the underdrain acting like a bioinfiltration system. | + | The total estimated ''Volume reduction capacity of BMP [V]'' is the sum of infiltration and ET occurring in the biofiltration BMP, and is calculated with user-provided inputs. For this BMP, the location of the underdrain determines how the infiltration component is calculated. If the underdrain is located at the bottom of the BMP, then the infiltration credit is based on infiltration into the bottom of the BMP (V<sub>inf<sub>b</sub></sub>) and into side slopes of the BMP above the underdrain (V<sub>inf<sub>s</sub></sub>). In contrast, if the underdrain is elevated above the bottom of the BMP, then the infiltration credit is based on the volume capacity of the bioretention base (V<sub>BB</sub>) between the underdrain and the native soils, and infiltration into the side slopes of the BMP above the underdrain (V<sub>inf<sub>s</sub></sub>). Both types of underdrain configurations can receive credit for ET in the media above the underdrain (V<sub>ET</sub>). A biofiltration system with an elevated underdrain thus behaves as a dual system, with the portion above the drain acting like a biofiltration system with an underdrain at the bottom and the portion below the underdrain acting like a bioinfiltration system. |
− | The ''Volume of retention provided by BMP'' is the total instantaneous volume credit that can be claimed for that BMP, and is determined by comparing the ''Volume reduction capacity of BMP [V]'' to the ''Required treatment volume''. | + | The ''Volume of retention provided by BMP'' is the total instantaneous volume credit that can be claimed for that BMP, and is determined by [[Requirements, recommendations and information for using bioretention with an underdrain BMPs in the MIDS calculator#Comparison of volume reduction capacity with volume performance goal|comparing the ''Volume reduction capacity of BMP [V]'' to the ''Required treatment volume'']]. |
====Volume reduction from infiltration==== | ====Volume reduction from infiltration==== | ||
=====Underdrain located at bottom of engineered media: ''Volume reduction from basin bottom infiltration (V<sub>inf<sub>b</sub></sub>)''===== | =====Underdrain located at bottom of engineered media: ''Volume reduction from basin bottom infiltration (V<sub>inf<sub>b</sub></sub>)''===== | ||
− | Even with an underdrain installed at the | + | Even with an underdrain installed at the bottom of the engineered media, under saturated conditions some water will infiltrate through the bottom soils rather than pass through the underdrain. This ''Volume reduction from basin bottom infiltration (V<sub>inf<sub>b</sub></sub>)'' is given by |
− | <math>V_{ | + | <math>V_{Inf_b} = I_R * (DDT) * A_B / (12in/ft) = 0.06 * (DDT) * A_B / (12in/ft)</math> |
Where | Where | ||
Line 87: | Line 87: | ||
If the underdrain is elevated above the bottom of the BMP, then storage capacity becomes available in the media between the underdrain and the native soils. | If the underdrain is elevated above the bottom of the BMP, then storage capacity becomes available in the media between the underdrain and the native soils. | ||
− | + | In systems with an elevated underdrain, this ''Volume reduction stored below underdrain'' is credited instead basin bottom infiltration (V<sub>Inf<sub>b</sub></sub>) credit that is given when the underdrain is at the bottom of the engineered media. This ''Volume reduction stored below underdrain'' is given by | |
<math>V= (A_U + A_B) / 2 * (n - FC) * D_U </math> | <math>V= (A_U + A_B) / 2 * (n - FC) * D_U </math> | ||
Line 100: | Line 100: | ||
=====Volume reduction from basin sides infiltration (V<sub>inf<sub>s</sub></sub>): underdrain elevated or at bottom of engineered media===== | =====Volume reduction from basin sides infiltration (V<sub>inf<sub>s</sub></sub>): underdrain elevated or at bottom of engineered media===== | ||
− | Under saturated conditions within the filter media, water will infiltrate through | + | Under saturated conditions within the filter media, water will infiltrate through any existing sloped sides of the basin as the stormwater draws down through the underdrain. Stormwater lost from a sloped sidewall (V<sub>inf<sub>s</sub></sub>) is considered to infiltrate vertically into the surrounding soil. This credit is calculated whether the underdrain is elevated or at the base of the engineered media. The volume of water infiltrated through the basin sides is given by |
− | <math>V_{ | + | <math>V_{Inf_s} = I_R * (DDT / 2) * (A_O - A_U ) / (12in/ft) = 0.06 * (DDT / 2) * (A_O - A_U ) / (12in/ft)</math> |
Where: | Where: | ||
− | :A<sub>O</sub> is the surface area at overflow (ft<sup>2</sup>); | + | :A<sub>O</sub> is the surface area at overflow (ft<sup>2</sup>); |
− | :A<sub>U</sub> is the surface area at the underdrain (ft<sup>2</sup>). | + | :A<sub>U</sub> is the surface area at the underdrain (ft<sup>2</sup>); and |
+ | :DDT is the drawdown time (hr). | ||
− | + | Due to the fact that drawdown occurs as a continuous process, basin sides infiltration is not presumed to occur along the entire height of the basin side during the entire drawdown time. For example, at "time zero", the entire side should be exposed to saturated conditions and exhibit sidewall infiltration; but at the end of the drawdown period, there would theoretically be no section of the side that is exposed to saturated conditions. Therefore, the drawdown time used in the calculation of (V<sub>inf<sub>s</sub></sub>) is reduced by a factor of 2 to account for the drop in water level and to approximate the "average" water level within the BMP during the drawdown period. The drop in water level is thus assumed to be linear over the drawdown time. A conservative default infiltration rate of 0.06 inches per hour is used because it is assumed that most of the stormwater will pass through the underdrain before it can infiltrate through the side walls of the BMP. If the user specifies that an impermeable liner is present on the sides of the BMP or if the sides are not sloped (i.e., A<sub>O</sub> = A<sub>U</sub>), then no credit is given for infiltration into the side soils. | |
====Volume reduction from evapotranspiration (ET)==== | ====Volume reduction from evapotranspiration (ET)==== |
For a bioretention (aka biofiltration) BMP with an underdrain at the bottom of the engineered media, most of the stormwater captured by the BMP is filtered and lost to the underdrain. However, some stormwater infiltrates through the basin bottom and sidewalls if these do not have an impermeable liner. Volume retention also occurs by evapotranspiration through the vegetation in the biofiltration BMP. For biofiltration systems with an elevated underdrain, additional volume retention is achieved through infiltration of water stored in the pore spaces of the engineered media between the underdrain invert and the native soils. All pollutants in infiltrated water are credited as being removed, while a portion of the pollutant loads in the stormwater that flows through the underdrain are removed through filtration.
NOTE: A bioretention device with an installed underdrain is a type of biofiltration device, since some portion of the treated water is filtered and discharged downstream rather than infiltrated. MPCA feels that biofiltration is the more generally applicable term for this BMP type; but the reader will currently find both of these terms on relevant pages, due to MPCA's understanding that a variety of terms are currently common in stormwater management.
For a biofiltration with underdrain system, the user must input the following parameters to calculate the volume and pollutant load reductions associated with the BMP.
If the following requirements for inputs into the MIDS calculator are not met, then an error message will inform the user to change the input to meet the requirement.
\(DDT_{calc}=D_U / (I_R / 12)\)
Where
If DDTcalc is greater than the user-specified required drawdown time then the user will be prompted to enter a new depth below the underdrain or infiltration rate of the native soils.
Required treatment volume, or the volume of stormwater runoff delivered to the BMP, equals the performance goal (1.1 inches or user-specified performance goal) times the impervious area draining to the BMP plus any water routed to the BMP from an upstream BMP. This stormwater is delivered to the BMP instantaneously following the Kerplunk method.
The total estimated Volume reduction capacity of BMP [V] is the sum of infiltration and ET occurring in the biofiltration BMP, and is calculated with user-provided inputs. For this BMP, the location of the underdrain determines how the infiltration component is calculated. If the underdrain is located at the bottom of the BMP, then the infiltration credit is based on infiltration into the bottom of the BMP (Vinfb) and into side slopes of the BMP above the underdrain (Vinfs). In contrast, if the underdrain is elevated above the bottom of the BMP, then the infiltration credit is based on the volume capacity of the bioretention base (VBB) between the underdrain and the native soils, and infiltration into the side slopes of the BMP above the underdrain (Vinfs). Both types of underdrain configurations can receive credit for ET in the media above the underdrain (VET). A biofiltration system with an elevated underdrain thus behaves as a dual system, with the portion above the drain acting like a biofiltration system with an underdrain at the bottom and the portion below the underdrain acting like a bioinfiltration system.
The Volume of retention provided by BMP is the total instantaneous volume credit that can be claimed for that BMP, and is determined by comparing the Volume reduction capacity of BMP [V] to the Required treatment volume.
Even with an underdrain installed at the bottom of the engineered media, under saturated conditions some water will infiltrate through the bottom soils rather than pass through the underdrain. This Volume reduction from basin bottom infiltration (Vinfb) is given by
\(V_{Inf_b} = I_R * (DDT) * A_B / (12in/ft) = 0.06 * (DDT) * A_B / (12in/ft)\)
Where
The default infiltration rate is set at 0.06 inches per hour to represent a D soil. This rate was selected because it is assumed most of the stormwater will pass through the underdrain before it can infiltrate through the bottom of the BMP. This may be a conservative assumption if underdrains are small, spaced far apart, and the underlying soil has an infiltration rate greater than 0.06 inches per hour. Conversely, more closely spaced or larger underdrains may allow the basin to drain in less than the required drawdown time, resulting in a slight overestimation of (Vinfb). If the user specifies that an impermeable liner is present at the bottom of the BMP, then no credit is given for infiltration into the bottom soils.
If the underdrain is elevated above the bottom of the BMP, then storage capacity becomes available in the media between the underdrain and the native soils. In systems with an elevated underdrain, this Volume reduction stored below underdrain is credited instead basin bottom infiltration (VInfb) credit that is given when the underdrain is at the bottom of the engineered media. This Volume reduction stored below underdrain is given by
\(V= (A_U + A_B) / 2 * (n - FC) * D_U \)
Where:
The stored water must drain within the specified drawdown time. The underlying soil controls the infiltration rate. The user must input the soil with the most restrictive hydraulic conductivity in the 3 feet directly below the basin (i.e. below the bottom of the engineered media). If the user specifies that an impermeable liner is present at the bottom of the BMP, then no volume reduction credit is given for storage below the underdrain.
Under saturated conditions within the filter media, water will infiltrate through any existing sloped sides of the basin as the stormwater draws down through the underdrain. Stormwater lost from a sloped sidewall (Vinfs) is considered to infiltrate vertically into the surrounding soil. This credit is calculated whether the underdrain is elevated or at the base of the engineered media. The volume of water infiltrated through the basin sides is given by
\(V_{Inf_s} = I_R * (DDT / 2) * (A_O - A_U ) / (12in/ft) = 0.06 * (DDT / 2) * (A_O - A_U ) / (12in/ft)\)
Where:
Due to the fact that drawdown occurs as a continuous process, basin sides infiltration is not presumed to occur along the entire height of the basin side during the entire drawdown time. For example, at "time zero", the entire side should be exposed to saturated conditions and exhibit sidewall infiltration; but at the end of the drawdown period, there would theoretically be no section of the side that is exposed to saturated conditions. Therefore, the drawdown time used in the calculation of (Vinfs) is reduced by a factor of 2 to account for the drop in water level and to approximate the "average" water level within the BMP during the drawdown period. The drop in water level is thus assumed to be linear over the drawdown time. A conservative default infiltration rate of 0.06 inches per hour is used because it is assumed that most of the stormwater will pass through the underdrain before it can infiltrate through the side walls of the BMP. If the user specifies that an impermeable liner is present on the sides of the BMP or if the sides are not sloped (i.e., AO = AU), then no credit is given for infiltration into the side soils.
In addition to the credit given for infiltration, a biofiltration BMP can achieve volume reduction through ET. The volume of water lost through evapotranspiration (VET) is the smaller of two calculated values, potential ET and measured ET.
Potential ET (ETpot) is equal to the amount of water stored between field capacity and the wilting point in the media above the underdrain, and is given by
\(ET_{pot} = (D_M - D_U ) * (A_M + A_U) / 2 * (FC - WP)\)
Where
Measured ET (ETmea) is the amount of water lost to ET as measured using available data. An average daily pan evaporation rate was estimated using previous measurements collected at the University of Minnesota Southwest Experiment Station at Lamberton, Minnesota (Source: Climate of Minnesota Part XII- The Hydrologic Cycle and Soil Water, 1979). A rate of 0.2 inches per day was selected, as this is an intermediate value between the summertime maximum rate and the lowest rates in October. Analysis of rainfall data indicates that a typical time period between precipitation events is 72 hours (3 days) in Minnesota. Therefore, a 3 day period is used to calculate the ETmea. A factor of 0.5 is also applied to convert the pan evaporation rate to ETmea. The ETmea volume thus equals the media surface area (AM) in square feet times the average daily ET rate in inches per day times 3 days.
\(ET_{mea} = A_M * 0.2 in/day * 0.5 * 3 days / 12 in/ft = 0.025 A_M\)
The sum of the volumes lost to infiltration and to ET as calculated using the appropriate methods above gives the Volume reduction capacity of BMP [V]. The MIDS calculator compares the Volume reduction capacity of BMP [V] with the Required treatment volume, and the lesser of the two values is used to populate the Volume of retention provided by BMP. This comparison between potential and actual treatment volumes ensures that the BMP does not claim more credit than is due based on the actual amount of water routed to it. The Volume of retention provided by BMP is the actual volume credit the BMP receives toward the instantaneous performance goal. For example, if the BMP is oversized the user will only receive volume credit for the Required treatment volume routed to the BMP.
Annual volume retention is assessed by converting the instantaneous Volume reduction capacity of BMP [V] to an annual volume reduction percentage. This is accomplished through the use of performance curves developed from a range of modeling scenarios. These performance curves use the Volume reduction capacity of BMP [V], the infiltration rate of the underlying soils, the percent imperviousness of the contributing watershed area, and the size of the contributing watershed to calculate the Percent annual runoff volume retained.
Pollutant load reductions are calculated on an annual basis. Therefore, the first step in calculating annual pollutant load reductions is converting Volume reduction capacity of BMP, which is an instantaneous volume reduction, to an annual volume reduction percentage. While oversizing a BMP above Required treatment volume will not provide additional credit towards the performance goal volume, it may provide additional pollutant reduction.
A 100 percent removal is credited for all pollutants associated with the reduced volume of stormwater. Stormwater captured by the bioretention system but not infiltrated or consumed through ET is assumed to flow through the filter media and out the underdrain. A constant 60 percent removal rate is applied to the filtered stormwater for TSS reduction. The removal rates of the filtered stormwater for annual particulate phosphorus and dissolved phosphorus depend on the answers given to the three user inputs: Bioretention planting media mix, Is the P content of the media less than 30 mg/kg? and Is a soil amendment used to attenuate phosphorus?
Particulate Phosphorus: The particulate phosphorus credit given is either 0 percent or 45 percent depending on the media mix used and the P content of the media.
Dissolved Phosphorus: The dissolved phosphorus credit given is between 0 percent and 60 percent depending on the media mix, the media P content, and if the media was amended to attenuate phosphorus.
\(credit = 20 percent (D_M- D_U) / 2 ft\)
Where
The credit is calculated as a percent reduction with a maximum value of 20 percent for media depths above the underdrain greater than 2 feet. If the media depth above the underdrain is less than 2 feet the credit is reduced equivalently.
Phosphorus credits for bioretention systems with an underdrain. This includes tree trenches and dry swales.
Link to this table
Particulate phosphorus (PP) | Dissolved phosphorus (DP) |
---|---|
Is Media Mix C or D being used or, if using a mix other than C or D, is the media phosphorus content 30 mg/kg or less per the Mehlich 3 (or equivalent) test1?
The assumption of 55 percent particulate phosphorus and 45 percent dissolved phosphorus is likely inaccurate for certain land uses, such as industrial, transportation, and some commercial areas. Studies indicate particulate phosphorus comprises a greater percent of total phosphorus in these land uses. It may therefore be appropriate to modify the above equation with locally derived ratios for particulate and dissolved phosphorus. For more information on fractionation of phosphorus in stormwater runoff, link here.
Example PP removal credit
|
1. Is Media Mix C or D being used or, if using a mix other than C or D, is the media phosphorus content 30 mg/kg or less per the Mehlich 3 (or equivalent) test1?
2. Does the system include approved P-sorbing soil amendments2?
The assumption of 55 percent particulate phosphorus and 45 percent dissolved phosphorus is likely inaccurate for certain land uses, such as industrial, transportation, and some commercial areas. Studies indicate particulate phosphorus comprises a greater percent of total phosphorus in these land uses. It may therefore be appropriate to modify the above equation with locally derived ratios for particulate and dissolved phosphorus. For more information on fractionation of phosphorus in stormwater runoff, link here. |
|
1Other widely accepted soil P tests may be used. Note: a basic conversion of test results may be necessary
2Acceptable P sorption amendments include
NOTE: The user can modify event mean concentrations (EMCs) on the Site Information tab in the calculator. Default concentrations are 54.5 milligrams per liter for total suspended solids (TSS) and 0.3 milligrams per liter for total phosphorus (particulate plus dissolved). The calculator will notify the user if the default is changed. Changing the default EMC will result in changes to the total pounds of pollutant reduced.
A biofiltration basin can be routed to any other BMP, except for a green roof and a swale side slope or any BMP that would cause stormwater to be rerouted back to the biofiltration basin already in the sequence. All BMPs can be routed to a biofiltration, except for a swale side slope BMP.
The following general assumptions apply in calculating the credit for a biofiltration basin. If these assumptions are not followed the volume and pollutant reduction credits cannot be applied.
An unlined biofiltration basin with an elevated underdrain is to be constructed in a watershed that contains a 1.4 acre parking lot surrounded by 0.8 acres of pervious area (turf area and the bioretention BMP area). All of the runoff from the watershed will be treated by the biofiltration basin. The soils across the area have a unified soils classification of SM (HSG type B soil). The surface overflow is located 1 ft above the media surface. The surface area of the biofiltration basin at the overflow point will be 6534 square feet. The area is 5600 square feet at the media surface. The surface area at the invert of the underdrain will be 3948 square feet. The area at the media-soil interface is 3320 square feet. The total media depth will be 3 feet with 1 foot of media between the underdrain and the native soils. Following the MPCA Construction Stormwater General Permit requirement, the water below the underdrain in the biofiltration basin needs to drawdown in a 48 hour time period. The media will be Media Mix C, which is mostly sand resulting in a difference between the media wilting point and field capacity of 0.11 cubic feet per cubic foot and a difference between the media porosity and field capacity of 0.26 cubic feet per cubic foot. The P content of the media is less than 30 mg/kg (milligrams per kilogram) and no soil amendments will be used to attenuate phosphorus. The following steps detail how this system would be set up in the MIDS calculator.
Step 1: Determine the watershed characteristics of your entire site. For this example we have a 2.2 acre site with 1.4 acres of impervious area and 0.8 acres of pervious area in type B soils. The pervious area includes the turf area and the area of the biofiltration basin.
Step 2: Fill in the site specific information into the Site Information tab. This includes entering a Zip Code (55414 for this example) and the watershed information from Step 1. The Managed turf area includes the turf area and the area of the bioretention basin. Zip code and impervious area must be filled in or an error message will be generated. Other fields on this screen are optional.
Step 3: Go to the Schematic tab and drag and drop the Bioretention basin (with underdrain) icon into the Schematic Window
Step 4: Open the BMP properties for the bioretention basin by right clicking on the Bioretention basin (with underdrain) icon and selecting Edit BMP properties, or by double clicking on the Bioretention basin (with underdrain) icon.
Step 5: If help is needed click on the Minnesota Stormwater Manual Wiki link or the Help button to review input parameter specifications and calculation specific to the Bioretention basin (with underdrain) BMP.
Step 6: Determine the watershed characteristics for the Bioretention basin. For this example the entire site is draining to the bioretention basin. The watershed parameters therefore include a 2.2 acre site with 1.4 acres of impervious area and 0.8 acres of pervious turf area in type B soils. There is no routing for this BMP. Fill in the BMP specific watershed information (1.4 acres on impervious cover and 0.8 acres of Managed turf in B soils).
Screen shot showing BMP Parameters tab for bioretention with an elevated underdrain. See Step 7.
Step 7: Enter in the BMP design parameters into the BMP parameters tab. Bioretention basin with an underdrain requires the following entries.
Step 8: Click on BMP Summary tab to view results for this BMP.
Step 9: Click on the OK button to exit the BMP properties screen.
Step 10: Click on Results tab to see overall results for the site.
An unlined biofiltration basin with an underdrain at the bottom is to be constructed in a watershed that contains a 1.4 acre parking lot surrounded by 0.8 acres of pervious area (turf area and the bioretention BMP area). All of the runoff from the watershed will be treated by the biofiltration basin. The soils across the area have a unified soils classification of SM (HSG type B soil). The surface overflow is located 1 ft above the media surface. The surface area of the biofiltration basin at the overflow point will be 6534 square feet. The area is 5600 square feet at the media surface. The area at the media-soil interface is 3320 square feet. The total media depth will be 3 feet. The media will be Media Mix C, which is mostly sand resulting in a difference between the media wilting point and field capacity of 0.11 cubic feet per cubic foot and a difference between the media porosity and field capacity of 0.26 cubic feet per cubic foot. The P content of the media is less than 30 mg/kg (milligrams per kilogram) and no soil amendments will be used to attenuate phosphorus. The following steps detail how this system would be set up in the MIDS calculator.
Step 1: Determine the watershed characteristics of your entire site. For this example we have a 2.2 acre site with 1.4 acres of impervious area and 0.8 acres of pervious area in type B soils. The pervious area includes the turf area and the area of the biofiltration basin.
Step 2: Fill in the site specific information into the Site Information tab. This includes entering a Zip Code (55414 for this example) and the watershed information from Step 1. The Managed turf area includes the turf area and the area of the bioretention basin. Zip code and impervious area must be filled in or an error message will be generated. Other fields on this screen are optional.
Step 3: Go to the Schematic tab and drag and drop the Bioretention basin (with underdrain) icon into the Schematic Window
Step 4: Open the BMP properties for the bioretention basin by right clicking on the “Bioretention basin (with underdrain)” icon and selecting Edit BMP properties, or by double clicking on the Bioretention basin (with underdrain) icon.
Step 5: If help is needed click on the Minnesota Stormwater Manual Wiki link or the Help button to review input parameter specifications and calculation specific to the “Bioretention basin (with underdrain)” BMP.
Step 6: Determine the watershed characteristics for the Bioretention basin. For this example the entire site is draining to the bioretention basin. The watershed parameters therefore include a 2.2 acre site with 1.4 acres of impervious area and 0.8 acres of pervious turf area in type B soils. There is no routing for this BMP. Fill in the BMP specific watershed information (1.4 acres on impervious cover and 0.8 acres of Managed turf in B soils).
Step 7: Enter in the BMP design parameters into the BMP parameters tab. Bioretention basin with an underdrain requires the following entries.
Step 8: Click on BMP Summary tab to view results for this BMP.
Step 9: Click on the OK button to exit the BMP properties screen.
Step 10: Click on Results tab to see overall results for the site.