m |
m |
||
Line 166: | Line 166: | ||
===Volume credit calculations - no check dam=== | ===Volume credit calculations - no check dam=== | ||
− | Volume credits for swales without check dams can be calculated using an appropriate model, such as the MIDS calculator. | + | When a check dam is not incorporated into the design, water will infiltrate into the soil or media as it is conveyed along the swale. Volume credits for swales without check dams can be calculated using an appropriate model, such as the MIDS calculator or soil infiltration models (e.g. Green and Ampt). |
<!-- | <!-- |
Recommended pollutant removal efficiencies, in percent, for dry swale BMPs. Sources. NOTE: removal efficiencies are 100 percent for water that is infiltrated. TSS=total suspended solids; TP=total phosphorus; PP=particulate phosphorus; DP=dissolved phosphorus; TN=total nitrogen | |||||||
TSS | TP | PP | DP | TN | Metals | Bacteria | Hydrocarbons |
68 | link to table | link to table | link to table | 35 | 80 | 0 | 80 |
Credit refers to the quantity of stormwater or pollutant reduction achieved either by an individual Best Management Practice BMP or cumulatively with multiple BMPs. Stormwater credits are a tool for local stormwater authorities who are interested in
This page provides a discussion of how dry swales can achieve stormwater credits. Swales with and without underdrains are both discussed, with separate sections for each type of system as appropriate. Note that wet swales achieve no volume reduction and have limited pollutant removal capability. Wet swales are therefore not included in the following discussion.
Dry swales, sometimes called grass swales, are similar to bioretention cells but are configured as shallow, linear channels. Dry swales function primarily as a conveyance BMP, but provide treatment of stormwater runoff, particularly when used in tandem with check dams that temporarily retain water in a series of cells. Dry swales with an underdrain and engineered soil media are considered a filtration practice. Dry swales with in-situ soils capable of infiltration, (A or B soils) are considered infiltration practices. Dry swales are designed to prevent standing water. Dry swales typically have vegetative cover such as turf or native perennial grasses.
Dry swales without check dams or with underdrains primarily remove pollutants through filtration during conveyance of stormwater runoff. Dry swales may also provide some volume reduction benefits through infiltration and evapotranspiration during conveyance. Water quality treatment is also recognized through biological and microbiological uptake, and soil adsorption. Check dams may be incorporated into dry swale design to enhance infiltration.
Dry swales may be located throughout the treatment train, including the main form of conveyance between or out of BMPs, at the end of the treatment train, or designed as off-line configurations where the water quality volume is diverted to the filtration or infiltration practice. In any case, the practice may be applied as part of a stormwater management system to achieve one or more of the following objectives:
This section describes the basic concepts and equations used to calculate credits for volume, Total Suspended Solids (TSS) and Total Phosphorus (TP). Specific methods for calculating credits are discussed later in this article.
Dry swale practices generate credits for volume, TSS,and TP. Dry swale practices with an underdrain do not substantially reduce the volume of runoff but may qualify for a partial volume credit as a result of evapotranspiration, infiltration occurring through the sidewalls above the underdrain, and infiltration below the underdrain piping. Dry swale practices are effective at reducing concentrations of other pollutants including metals and hydrocarbons. They are generally not effective at removing bacteria. This article does not provide information on calculating credits for pollutants other than TSS and TP, but references are provided that may be useful for calculating credits for other pollutants.
In developing the credit calculations, it is assumed the swale is properly designed, constructed, and maintained in accordance with the Minnesota Stormwater Manual. If any of these assumptions is not valid, the BMP may not qualify for credits or credits should be reduced based on reduced ability of the BMP to achieve volume or pollutant reductions. For guidance on design, construction, and maintenance, see the appropriate article within the Manual.
Unlike other BMPs such as bioretention and permeable pavement, credits for swales are calculated in two ways. First, if check dams are incorporated into the design, the water quality volume (VWQ) is assumed to be delivered instantaneously to the BMP and stored as water ponded behind the check dam, above the filter media, and below the overflow point of the check dam. VWQ can vary depending on the stormwater management objective(s). For construction stormwater, VWQ is 1 inch times new impervious surface area. For MIDS, the VWQ is 1.1 inches times impervious surface area.
If check dams are not incorporated into the swale, water will infiltrate into the underlying soil or filter media as it is conveyed along the swale. The amount of water captured in this manner is a function of the underlying soil permeability and the slope of the swale.
Volume credits are typically calculated based on the capacity of the BMP and its ability to permanently remove stormwater runoff from the existing stormwater collection system. When check dams are incorporated into the design, these credits are assumed to be instantaneous values entirely based on the capacity of the BMP for any storm event. Instantaneous volume reduction, or event based volume reduction of a BMP can be converted to annual volume reduction percentages using the MIDS calculator or other appropriate modeling tools.
Credits for dry swales with check dams are dependent on multiple design factors of the swale channel and side slopes, as well as infiltration rates for underlying soils. The water quality volume (Vwq) achieved behind each check dam (instantaneous volume) is given by
\( V_{wq} = h^2 * (h * H + B_w)]/(2S) \)
where
Add the Vwq for each check dam together to obtain the cumulative water quality volume for the swale.
For an example calculation, link here.
Some of the VWQ will be lost to evapotranspiration rather than all being lost to infiltration. In terms of a water quantity credit, this differentiation is unimportant, but it may be important if attempting to calculate actual infiltration into the underlying soil.
The annual volume captured and infiltrated by the BMP can be determined with appropriate modeling tools, including the MIDS calculator. Example values are shown below for a scenario using the MIDS calculator. For example, a permeable pavement system designed to capture 1 inch of runoff from impervious surfaces will capture 89 percent of annual runoff from a site with B (SM) soils.
Annual volume, expressed as a percent of annual runoff, treated by a BMP as a function of soil and Water Quality Volume. See footnote1 for how these were determined.
Link to this table
Soil | Water quality volume (VWQ) (inches) | ||||
---|---|---|---|---|---|
0.5 | 0.75 | 1.00 | 1.25 | 1.50 | |
A (GW) | 84 | 92 | 96 | 98 | 99 |
A (SP) | 75 | 86 | 92 | 95 | 97 |
B (SM) | 68 | 81 | 89 | 93 | 95 |
B (MH) | 65 | 78 | 86 | 91 | 94 |
C | 63 | 76 | 85 | 90 | 93 |
1Values were determined using the MIDS calculator. BMPs were sized to exactly meet the water quality volume for a 2 acre site with 1 acre of impervious, 1 acre of forested land, and annual rainfall of 31.9 inches.
Volume credit for a swale with check dams and an underdrain is the same as for a biofiltration BMP, although some of the BMP configurations differ somewhat. Volume credits are available only if the BMP permanently removes a portion of the stormwater runoff via infiltration through sidewalls or beneath the underdrain piping, or through evapotranspiration. These credits are assumed to be instantaneous values based on the design capacity of the BMP for a specific storm event. Instantaneous volume reduction, also termed event based volume reduction, can be converted to annual volume reduction percentages using the MIDS calculator or other appropriate modeling tools.
Volume credits for a dry swale with check dams and underdrains are calculated by a combination of infiltration through the unlined sides and bottom of the basin (the area above the underdrain), the volume loss through evapotranspiration (ET), and the retention volume below a raised underdrain, if applicable (this is based on the assumption that this stored water will infiltrate into the underlying soil). The main design variables impacting the volume credits include whether the underdrain is elevated above the native soils and if an impermeable liner on the sides or bottom of the basin is used. Other design variables include surface area at the check dam overflow, media top surface area, underdrain location, and basin bottom locations, total depth of media, soil water holding capacity and media porosity, and infiltration rate of underlying soils.
The following calculations are for a single check dam. To get the total volume credit add the volumes for each check dam.
The volume credit (V) for a dry swale with a check dam and underdrain, in cubic feet, is given by
\( V = V_{inf_B} + V_{inf_s} + V_{ET} + V_U \)
where:
Volume credits for infiltration through the bottom of the basin (Vinfb) are accounted for only if the bottom of the basin is not lined. As long as water continues to draw down, some infiltration will occur through the bottom of the BMP. However, it is assumed that when an underdrain is included in the installation, the majority of water will be filtered through the media and exit through the underdrain. Because of this, the drawdown time is likely to be short. Volume credit for infiltration through the bottom of the basin is given by
\( V_{inf_B} = A_B\ DDT\ I_R/12 \)
where
The drawdown time is typically a maximum of 48 hours, which is designed to be protective of plants grown in the media. The Construction Stormwater permit requires drawdown within 48 hours and recommends 24 hours when discharges are to a trout stream. With a properly functioning underdrain, the drawdown time is likely to be considerably less than 48 hours.
Volume credit for infiltration through the sides of the basin is accounted for only if the sides of the basin are not lined with an impermeable liner. Volume credit for infiltration through the sides of the basin is given by
\( V_{inf_s} = (A_O - A_U)\ DDT\ I_R/12 \)
where
This equation assumes water will infiltrate through the entire sideslope area during the period when water is being drawn down. This is not the case, however, since the water level will decline in the BMP. The MIDS calculator assumes a linear drop in water level and thus divides the right hand term in the above equation by 2.
Volume credit for media storage capacity below the underdrain (VU) is accounted for only if the underdrain is elevated above the native soils. Volume credit for media storage capacity below the underdrain is given by
\( V_U = (n-FC)\ D_U\ (A_U + A_B)/2 \)
where
This is an instantaneous volume. This will somewhat overestimate actual storage when the majority of water is being captured by the underdrains. This equation assumes water between the soil porosity and field capacity will infiltrate into the underlying soil.
The volume of water lost through ET is assumed to be the smaller of two calculated values: potential ET and measured ET. Potential ET (ETpot) is equal to the amount of water stored in the basin between field capacity and the wilting point. Measured ET (ETmea) is the amount of water lost to ET as measured using available data and is assumed to be 0.2 inches/day. ETmea is converted to ET by multiplying by a factor of 0.5. ET is considered to occur over a period equal to the drawdown time of the basin. Volume credit for evapotranspiration is given by the lesser of
\( ET_{mea} = (0.2/12)\ A\ 0.5\ t \) \( ET_{pot} = D\ A\ C_S \)
where
ET is likely to be greater if one or more trees is planted in the biofiltration basin. Planting a tree in a biofiltration system is HIGHLY RECOMMENDED. The MIDS calculator increases the above ET credit by a factor of 3 when a tree is planted in the bioretention basin.
Provided soil water content is greater than the wilting point, ET will continually occur during the non-frozen period. However, because the above volume calculations are event based, t will be equal to the time between rain events. In the MIDS calculator, a value of 3 days is used because this is the average number of days between precipitation events. ET will occur over the entire media depth. D may therefore be set equal to the media depth (DM). In this case, the value for A would be the average area through the entire depth of the media. The MIDS calculator limits ET to the area above the underdrain. If infiltration is being computed through the bottom and sidewalls of the basin, then CS would be field capacity minus the wilting point of soils (cubic feet per cubic foot) since water above the field capacity would infiltrate (or go to an underdrain).
The volume of water passing through underdrains can be determined by subtracting the volume loss (V) from the volume of water instantaneously captured by the BMP. No volume reduction credit is given for filtered stormwater that exits through the underdrain, but the volume of filtered water can be used in the calculation of pollutant removal credits through filtration.
The volume reduction credit (V) can be converted to an annual volume if desired. This conversion can be generated using the MIDS calculator or other appropriate modeling techniques. The MIDS calculator obtains the percentage annual volume reduction through performance curves developed from multiple modeling scenarios using the volume reduction capacity for biofiltration, the infiltration rate of the underlying soils, and the contributing watershed size and imperviousness.
When a check dam is not incorporated into the design, water will infiltrate into the soil or media as it is conveyed along the swale. Volume credits for swales without check dams can be calculated using an appropriate model, such as the MIDS calculator or soil infiltration models (e.g. Green and Ampt).
This section provides specific information on generating and calculating credits from bioretention BMPS for volume, Total Suspended Solids (TSS) and Total Phosphorus (TP). Stormwater runoff volume and pollution reductions (“credits”) may be calculated using one of the following methods:
Users may opt to use a water quality model or calculator to compute volume, TSS and/or TP pollutant removal for the purpose of determining credits for dry swales. The available models described in the following sections are commonly used by water resource professionals, but are not explicitly endorsed or required by the Minnesota Pollution Control Agency.
Use of models or calculators for the purpose of computing pollutant removal credits should be supported by detailed documentation, including:
The following table lists water quantity and water quality models that are commonly used by water resource professionals to predict the hydrologic, hydraulic, and/or pollutant removal capabilities of a single or multiple stormwater BMPs. The table can be used to guide a user in selecting the most appropriate model for computing volume, TSS, and/or TP removal for constructed basin BMPs. In using this table to identify models appropriate for constructed ponds and wetlands, use the sort arrow on the table and sort by Constructed Basin BMPs. Models identified with an X may be appropriate for using with constructed basins.
Comparison of stormwater models and calculators. Additional information and descriptions for some of the models listed in this table can be found at this link. Note that the Construction Stormwater General Permit requires the water quality volume to be calculated as an instantaneous volume, meaning several of these models cannot be used to determine compliance with the permit.
Link to this table
Access this table as a Microsoft Word document: File:Stormwater Model and Calculator Comparisons table.docx.
Model name | BMP Category | Assess TP removal? | Assess TSS removal? | Assess volume reduction? | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
Constructed basin BMPs | Filter BMPs | Infiltrator BMPs | Swale or strip BMPs | Reuse | Manu- factured devices |
|||||
Center for Neighborhood Technology Green Values National Stormwater Management Calculator | X | X | X | X | No | No | Yes | Does not compute volume reduction for some BMPs, including cisterns and tree trenches. | ||
CivilStorm | Yes | Yes | Yes | CivilStorm has an engineering library with many different types of BMPs to choose from. This list changes as new information becomes available. | ||||||
EPA National Stormwater Calculator | X | X | X | No | No | Yes | Primary purpose is to assess reductions in stormwater volume. | |||
EPA SWMM | X | X | X | Yes | Yes | Yes | User defines parameter that can be used to simulate generalized constituents. | |||
HydroCAD | X | X | X | No | No | Yes | Will assess hydraulics, volumes, and pollutant loading, but not pollutant reduction. | |||
infoSWMM | X | X | X | Yes | Yes | Yes | User defines parameter that can be used to simulate generalized constituents. | |||
infoWorks ICM | X | X | X | X | Yes | Yes | Yes | |||
i-Tree-Hydro | X | No | No | Yes | Includes simple calculator for rain gardens. | |||||
i-Tree-Streets | No | No | Yes | Computes volume reduction for trees, only. | ||||||
LSPC | X | X | X | Yes | Yes | Yes | Though developed for HSPF, the USEPA BMP Web Toolkit can be used with LSPC to model structural BMPs such as detention basins, or infiltration BMPs that represent source control facilities, which capture runoff from small impervious areas (e.g., parking lots or rooftops). | |||
MapShed | X | X | X | X | Yes | Yes | Yes | Region-specific input data not available for Minnesota but user can create this data for any region. | ||
MCWD/MWMO Stormwater Reuse Calculator | X | Yes | No | Yes | Computes storage volume for stormwater reuse systems | |||||
Metropolitan Council Stormwater Reuse Guide Excel Spreadsheet | X | No | No | Yes | Computes storage volume for stormwater reuse systems. Uses 30-year precipitation data specific to Twin Cites region of Minnesota. | |||||
MIDS Calculator | X | X | X | X | X | X | Yes | Yes | Yes | Includes user-defined feature that can be used for manufactured devices and other BMPs. |
MIKE URBAN (SWMM or MOUSE) | X | X | X | Yes | Yes | Yes | User defines parameter that can be used to simulate generalized constituents. | |||
P8 | X | X | X | X | Yes | Yes | Yes | |||
PCSWMM | X | X | X | Yes | Yes | Yes | User defines parameter that can be used to simulate generalized constituents. | |||
PLOAD | X | X | X | X | X | Yes | Yes | No | User-defined practices with user-specified removal percentages. | |
PondNet | X | Yes | No | Yes | Flow and phosphorus routing in pond networks. | |||||
PondPack | X | [ | No | No | Yes | PondPack can calculate first-flush volume, but does not model pollutants. It can be used to calculate pond infiltration. | ||||
RECARGA | X | No | No | Yes | ||||||
SHSAM | X | No | Yes | No | Several flow-through structures including standard sumps, and proprietary systems such as CDS, Stormceptors, and Vortechs systems | |||||
SUSTAIN | X | X | X | X | X | Yes | Yes | Yes | Categorizes BMPs into Point BMPs, Linear BMPs, and Area BMPs | |
SWAT | X | X | X | Yes | Yes | Yes | Model offers many agricultural BMPs and practices, but limited urban BMPs at this time. | |||
Virginia Runoff Reduction Method | X | X | X | X | X | X | Yes | No | Yes | Users input Event Mean Concentration (EMC) pollutant removal percentages for manufactured devices. |
WARMF | X | X | Yes | Yes | Yes | Includes agriculture BMP assessment tools. Compatible with USEPA Basins | ||||
WinHSPF | X | X | X | Yes | Yes | Yes | USEPA BMP Web Toolkit available to assist with implementing structural BMPs such as detention basins, or infiltration BMPs that represent source control facilities, which capture runoff from small impervious areas (e.g., parking lots or rooftops). | |||
WinSLAMM | X | X | X | X | Yes | Yes | Yes | |||
XPSWMM | X | X | X | Yes | Yes | Yes | User defines parameter that can be used to simulate generalized constituents. |
Users should refer to the MIDS Calculator section of the WIKI for additional information and guidance on credit calculation using this approach.
A simplified approach to computing a credit would be to apply a reduction value found in literature to the pollutant mass load or event mean concentration (EMC) of the dry swale. A more detailed explanation of the differences between mass load reductions and EMC reductions can be found here.
Designers may use the pollutant reduction values reported here or may research values from other databases and published literature.
Designers who opt for this approach should:
The following references summarize pollutant reduction values from multiple studies or sources that could be used to determine credits. Users should note that there is a wide range of monitored pollutant removal effectiveness in the literature. Before selecting a literature value, users should compare the characteristics of the monitored site in the literature against the characteristics of the proposed dry swale, considering such conditions as watershed characteristics, swale sizing, and climate factors.
According to the International BMP Database, studies have shown dry swales are effective at reducing concentration of other pollutants as well including solids, bacteria, metals, and nutrients. This database provides an overview of BMP performance in relation to various pollutant categories and constituents that were monitored in BMP studies within the database. The report notes that effectiveness and range of unit treatment processes can vary greatly depending on BMP design and location. Table 3-4 shows a list of the constituents and associated pollutant category for the monitored “media filters” data. The constituents shown all had data representing decreases in effluent pollutant loads for the median of the data points and the 95% confidence interval about the median. If dry swale design utilizes a bioretention base, additional pollutant removals may be applicable as well (For more information see the bioretention credit article ). Pollutant removal percentages for dry swale BMPs can also be found on the WIKI page.
Dry swale pollutant load reduction
Link to this table
Pollutant Category | Constituent | Treatment Capabilities
(Low = < 30%; Medium = 30-65%; High = 65 -100%) |
---|---|---|
Metals1 | Cd, Cr, Cu, Zn | Medium |
As2,Fe, Ni, Pb | Medium/High | |
Nutrients | Total Nitrogen, TKN | Low |
Bacteria | Fecal Coliform, E. coli | Low |
Organics | Medium |
1Results are for total metals only
2Information on As was found only in the International Stormwater Database where removal was found to be low
1Results are for total metals only
2Information on As was found only in the International Stormwater Database where removal was found to be low