Link to fact sheet on managing street sweepings - [1]
Street sweepings are materials such as sand, salt, leaves and debris removed from city streets, parking lots and sidewalks to prevent these materials from being washed into storm sewers and surface waters, and to improve the appearance of public roadways. For a discussion of potential benefits associated with street sweeping, see Overview, water quality benefits, and other co-benefits of street sweeping.
To see references for material on this page, [link here].
Sources of materials in street sweepings
The primary sources of materials in street sweepings include the following.
- Automobiles and other vehicles. These are important sources of hydrocarbons associated with fluids (e.g. oil, gasoline, antifreeze) and metals associated with vehicle parts (e.g. brake linings, tire wear). These materials, particularly metals, are typically released at higher rates as vehicle speed increases and as the extent of stopping increases.
- Vegetation. Trees and grass adjacent to impermeable surfaces are important sources of organic materials to impervious surfaces that are swept. These organic materials are important sources of phosphorus and nitrogen, may contribute to oxygen demand, and may act as source areas for bacteria.
- Atmospheric deposition. Deposition is an important source of inorganic solids. This includes deposition from near-source and distant-source areas. These solids may be important sources of pollutants attached to the solids, including metals, PAHs, and a range of emerging chemicals (e.g. pesticides, microplastics).
- Local sources. This includes a wide range of sources that may have significant impacts locally. Examples include active construction sites (sources of sediment), industry (sources of organics), and contaminated sites (e.g. salvage yards, vehicle operations facilities, waste management facilities).
- Trash and debris. With streets that are frequently swept, trash is typically not an important source of pollutants. However, in some areas where inputs of these are high, or where sweeping is infrequent, thus allowing the materials to break down, trash and debris can be important contributors of certain pollutants, such as microplastics.
- Exposed and poorly managed soils. Soil, when exposed, poorly managed, or on steep slopes, can be an important source of sediment. Unless the soil is associated with another source (e.g. metals in high transportation areas), eroded soil transported to impervious surfaces is not an important source of other pollutants.
- Irrigated lawns. Lawns that are over-watered can be important sources of bacteria, organic material, and phosphorus if the source water contains polyphosphates.
- De-icing materials and sand applied for traction. In cold climates, de-icing materials are important sources of chloride, sodium, and phosphorus. Sand applied for traction is an important source of sediment.
Composition and characteristics of street sweeping materials
The composition and characteristics of street sweepings depends on multiple factors, including but not limited to the following. The discussion describes typical conditions.
- Source area (land use). Concentrations of metals, PAHs, and other organics, including many emerging chemicals, are higher in medium and high intensity developed land uses, such as industrial, heavy commercial, and high transportation areas, compared to lower intensity developed areas, such as residential areas. Sources of nutrients associated with organic material are greatest in residential areas.
- Type of sweeper.
- Time of year.
- Buildup period/interval.
- Soil. An important factor affecting the occurrence and distribution of pollutants in sweeping material is particle size. Concentrations of metals and organics that bind with inorganic sediment increase as particle size decreases. Thus, soil can locally play an important role in the composition of material accumulating on impervious surfaces, particularly when soils are exposed (e.g. active construction sites) or poorly managed (e.g. compacted or exposed soils, or soils on steep slopes).
Concentrations of potential pollutants in sweeping material
Storing, screening, using, and disposing sweeping material
There is limited guidance in the literature on management of street sweepings. This page summarizes information found in the literature and may be useful as guidance for managing sweepings.
Storage
- Storage should be
- at the site where the sweepings are generated (e.g. at a parking area that was swept);
- at a location, such as a Department of Public Works (DPW) yard, that is under the control of the governmental entity doing the sweeping or has contracted for the sweeping; or,
- at other locations with prior written approval from the local governing authority.
- Street Sweepings should be protected from wind and rain to the extent necessary to prevent dust, erosion, and off-site migration.
- Street Sweepings should not be stored within the 100 foot buffer zone of a wetland or within wetland resource areas including bordering vegetative wetlands and riverfront areas.
- Street Sweepings should not be stored within 500 feet of a ground or surface drinking water supply.
- Storage of the Street Sweepings should incorporate good management practice and result in no public nuisance.
- Street Sweepings should be used within one year of collection.
References
Screening street sweepings
Three waste streams are generated during the screening phase - solid waste, organic debris, and sediment.
Solid waste, such as paper, auto parts and other trash, should be removed from all street sweepings prior to use. Solid waste screened from the street sweepings should be disposed of at a permitted solid waste
facility. Leaves, twigs and other organic matter should also be removed when good engineering practice indicates this is necessary to produce a material that is suitable for the intended use. The organic material may be composted. If the compost is to be reused, ensure it has been properly cured or aged. This ensures the removal of pathogens and degradation of light and medium molecular weight organic compounds. For guidance on compost maturity, including links to guidelines for composting, link here.
A 3/4-inch mesh will screen out much of the debris from collected street sweepings prior to mixing. If a municipality chooses to rinse the sweepings to remove the fine particles and debris so that the sand may be reused on roads during the following winter, contact local authorities for additional guidance and discharge requirements.
Screened materials should be stored following the guidelines described above.
Using and disposing sweepings
A fact sheet by the Minnesota Pollution Control Agency outlines management options for reuse of street sweepings. Much of the discussion in this section comes from this fact sheet. Note this fact sheet was last updated in 2010.
Street sweepings are not considered hazardous material and do not require testing, but they are not suitable for unrestricted use, even after screening. Sweepings cannot be disposed at the following:
- playgrounds;
- children’s play areas;
- residential yards;
- areas where human contact occurs on a continuous basis;
- areas near drinking water wells;
- wellhead protection areas for public drinking-water supplies; and
- sites with karst features, including sinkholes, disappearing streams and caves.
Prior to reuse, trash, leaves and other debris must be removed from the sweepings. This removal is often accomplished by screening, but other methods may also be used. Dispose of trash and debris removed from the
sweepings by
- recycling, such as aluminum cans;
- composting, such as leaves; or
- sending to a Municipal Solid Waste Landfill (MSW) immediately after being screened.
Street sweepings that are not screened for trash and debris are considered industrial solid waste and must be disposed of at a permitted solid waste facility that can accept the waste. Unscreened street sweepings must also be stored in accordance with solid waste storage standards (Minn. R. 7035.2855).
If street sweepings are screened prior to being stockpiled, they are exempt from Minnesota solid waste storage standards. Street sweepings can be reused in any of the following ways without MPCA approval, provided that all solid waste has been screened from the sweepings.
- Mix with new salt/sand mixture for winter application to roads, parking lots or sidewalks
- Use as daily cover material at a permitted solid waste landfill, provided that the landfill is approved to use street sweepings as Alternate Daily Cover (ADC).
- Use as material in commercial and industrial development projects, road restoration or construction projects.
If sweepings are used as cover or fill, they must meet the following requirements.
- Separation distances
- 200 feet from lakes, rivers, streams, wetlands, intermittent streams, tile inlets, and karst features
- 3 feet from groundwater
- 3 feet from fractured bedrock
- 50 feet from potable water supplies
- Seed or cover
- Within 7 days on slopes greater than 3:1
- Within 14 days on slopes between 10:1 and 3:1
- Within 21 days on slopes flatter than 10:1
Other entities (e.g. states, cities) have similar information about managing street sweepings, with some differences from Minnesota. Below are links to documents describing how sweepings are managed in other locations.
Results of survey on managing street sweepings
We conducted a survey of stakeholders who conduct street sweeping, mostly at the municipality level. Survey questions included the following.
- Which of the following best describes how do you manage your sweepings?
- Not screened; landfilled
- Screened; Sweepings are screened and the organic portion utilized
- Depending on season or other factors we screen sometimes and not other times
- Other
- If you utilize the organic portion, how is it used?
- Composted and used as cover (e.g. at landfills, construction sites, etc.)
- Composted and made available for residents
- Given or delivered to another entity (e.g. a composting facility)
- Other uses
- If you were to significantly increase the amount of organic material you collect from sweeping, how big a challenge would managing the material be?
- A big challenge
- Somewhat of a challenge
- Not a challenge
- I'm not sure
Results
References
- Apeagyei, E., Bank, M.S., and Spengler, J.D. Distribution of Heavy Metals in Road Dust Along an Urban-Rural Gradient In Massachusetts. Atmospheric Environment, Vol. 45, No. 13, 2011, pp. 2310–2323.
- Breault, R.F., K.P. Smith, and J.R. Sorenson. 2005. Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type Sweepers, New Bedford, Massachusetts, 2003-04. USGS Scientific Investigations Report 2005-5184.
- Duong, T.T.T., and Lee, B.K. Determining Contamination Level of Heavy Metals in Road Dust From Busy Traffic Areas With Different Characteristics. Journal of Environmental Management, Vol. 92, No. 3, 2011, pp. 554–562.
- Gunawardana, C., Egodawatta, P., and Goonetilleke, A. Role of Particle Size and Composition in Metal Adsorption by Solids Deposited on Urban Road Surfaces. Environmental Pollution, Vol. 184, 2014, pp. 44–53.
- Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., and Kokot, S. Role of Solids in Heavy Metals Buildup on Urban Road Surfaces. Journal of Environmental Engineering, Vol. 138, Issue 4, April 2012, pp. 490–498.
- Herngren, L., Goonetilleke, A., and Ayoko, G.A. Analysis of Heavy Metals in Road-Deposited Sediments. Analytica Chimica Acta, Vol. 571, No. 2, 2006, pp. 270–278.
- Irvine, K.N., Perrelli, M.F., Ngoen-Klan, R., and Droppo, I.G. Metal Levels in Street Sediment From an Industrial City: Spatial Trends, Chemical Fractionation, and Management Implications. Journal of Soils and Sediments, Vol. 9, No. 4, 2009, pp. 328–341.
- Lau, S.L., and Stenstrom, M.K. Metals and PAHs Adsorbed to Street Particles. Water Research, Vol. 39, No. 17, 2005, pp. 4083–4092.
- Liu, A., Liu, L., Li, D., and Guan, Y. Characterizing Heavy Metal Build-Up on Urban Road Surfaces: Implication for Stormwater Reuse. Science of the Total Environment, Vol. 515–516, 2015, pp. 20–29.
- Liu, L., Liu, A., Li, Y., Zhang, L., Zhang, G., and Guan, Y. Polycyclic Aromatic Hydrocarbons Associated With Road Deposited Solid and Their Ecological Risk: Implications for Road Stormwater Reuse. Science of the Total Environment, Vol. 563–564, 2016, pp. 190–198.
- Lloyd, L.N., G.M. Fitch, T.S. Singh, J.A. Smith. 2018. Characterization of Residuals Collected From Street Sweeping Operations. Virginia Transportation Research Council. Report VTRC 18-R20.
- Miller, C.M., Iv, W.H.S., and Kennedy, M. Procedures for Waste Management From Street Sweeping and Stormwater Systems: Interim Report. State Job Number 134731. Ohio Department of Transportation Office of Research, Akron, 2013.
- Minnesota Pollution Control Agency. Managing Street Sweepings. W-Sw4-54. Rochester, 2010.
- Minnicino, M.J., Draper, D.R., Dresden Robin Terrasciences, I., and Jersey City, N.J. Analysis of Urban Street Sweepings in New Jersey and Their Reuse Feasibility. Air and Waste Managment Association, Vol. 4B, 1993.
- Obrien, A.M. Beneficial Use Determination (BUD-20130829) for Screened Street Sweeping Fines. BUD-20130829. Department of Environmental Quality, Northwest Region, Portland, OR, 2014.
- Seattle Public Utilities and Herrera Environmental Consultants. Seattle Street Sweeping Pilot Study: Pilot Monitoring Report. AB/06-03381-000. Seattle Public Utilities, Seattle, WA, 2009.
- Sengupta, S. Processing and Reuse of Street Sweeping and Catch Basin Cleaning. SPRII.01.12. University of Massachusetts Dartmouth, Civil and Environmental Engineering Department, North Dartmouth, 2007.
- Sole, M. Guidance for the Management of Street Sweepings, Catch Basin Sediments and Stormwater System Sediments: Final Report. Department of Environmental Protection, Solid Waste Section, Tallahassee, FL, 2004.
- Sutherland, R.A., Tack, F.M.G., and Ziegler, A.D. Road-Deposited Sediments in an Urban Environment: A First Look at Sequentially Extracted Element Loads in Grain Size Fractions. Journal of Hazardous Materials, Vol. 225–226, 2012, pp. 54–62.
- Thorpe, A., and Harrison, R.M. Sources and Properties of Non-Exhaust Particulate Matter From Road Traffic: A Review. Science of the Total Environment, Vol. 400, Issue 1–3, 2008, pp. 270–282.
- Tian, P., Li, Y., and Yang, Z. Effect of Rainfall and Antecedent Dry Periods on Heavy Metal Loading of Sediments on Urban Roads. Frontiers of Earth Science in China, Vol. 3, No. 3, 2009, pp. 297–302.
- Townsend, T.G., Jang, Y.-C., Thurdekoos, P., Booth, M., Jain, P., and Tolaymat, T. Characterization of Street Sweepings, Stormwater Sediments, and Catch Basin Sediments, in Florida for Disposal and Reuse. Florida Center for Solid and Hazardous Waste Management, Gainesville, 2002.
- Townsend, T.G., Azah, E., and Kim, H. Polycyclic Aromatic Hydrocarbons and Their Impact on Beneficial Use of Roadway and Stormwater Residuals: Final Report. Hinkley Center for Solid and Hazardous Waste Management, Gainesville, 2013.
- Wang, C., Li, Y., Liu, J., Xiang, L., Shi, J., and Yang, Z. Characteristics of PAHs Adsorbed on Street Dust and the Correlation With Specific Surface Area and TOC. Environmental Monitoring and Assessment, Vol. 169, Issues 1–4, 2010, pp. 661–670.
- Wijesiri, B., Egodawatta, P., Mcgree, J., and Goonetilleke, A. Process Variability of Pollutant Build-Up on Urban Road Surfaces. Science of the Total Environment, Vol. 518–519, 2015, pp. 434–440.29
- Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A., and Ziegler, A.D. Accumulation of Potentially Toxic Elements in Road Deposited Sediments in Residential and Light Industrial Neighborhoods of Singapore. Journal of Environmental Management, Vol. 101, 2012, pp. 151–163.