This section provides information on design considerations, criteria and specifications for permeable pavement. Base/subbase thickness is determined for water storage using hydrologic sizing and/or dynamic modeling over time. Base/subbases thickness for supporting traffic is determined using structural design methods. The thicker of the two resulting designs is employed.
Permeable pavement is subject to the following design considerations, including benefits and constraints.
Base/subbase thickness is determined for support traffic using structural design methods and for water storage using hydrologic sizing and/or dynamic modeling over time. The thicker of the two resulting designs is used.
The structural design process for supporting vehicles varies according to the type of pavement selected. The pervious concrete industry is in the process of developing ASTM test methods for characterizing compressive or flexural strengths of pervious concrete. These tests are needed to model fatigue under loads. As an interim step, fatigue equations published by the American Concrete Pavement Association (ACPA 2010) assume such inputs to be comparable in nature (but not magnitude) to those used for conventional concrete pavements. The ACPA design method should be consulted for further information as well as pervious concrete industry software. General guidelines for pervious concrete surface thickness are published by the National Ready Mix Concrete Association NRMCA and the Portland Cement Association (Leming 2007).
Porous asphalt (Hansen 2008) and permeable interlocking pavements (Smith 2011) use flexible pavement design methods adopted from the 1993 AASHTO Guide for Design of Pavement Structures (AASHTO 1993). In addition, MnDOT design methods, approved mechanistic principles, and manufacturer’s specific recommendations should be consulted.
There has been limited research on full-scale testing of the structural behavior of open-graded bases used under permeable pavements to better characterizing relationships between loads and deformation. Therefore, conservative values (i.e., AASHTO layer coefficients) should be assumed for open-graded base and subbase aggregates in permeable pavement design.
Regardless of type of permeable pavement, structural design methods consider the following in determining surface and base thicknesses to support vehicular traffic:
Soil stability under traffic should be carefully reviewed for each application by a qualified geotechnical or civil engineer and lowest anticipated soil strength or stiffness values under saturated conditions used for design. Structural design for vehicular applications should generally be on soil subgrades with a CBR (96-hour soaked per ASTM D 1883 or AASHTO T 193) of 4%, or a minimum R-value = 9 per ASTM D 2844 or AASHTO T-190, or a minimum Mr of 6,500 psi (45 MPa) per AASHTO T-307. Soils with lower strengths typically require thickened permeable bases or those using cement or asphalt stabilized open-graded aggregates per Mn/DOT Pavement Manual, Section 3-3.01.02 Treated Base.
Soil compaction required to achieve these soil strengths will reduce the infiltration rate of the soil. Therefore, the permeability or infiltration rate of soil should be assessed at the density required to achieve one of these values. If soils under vehicular traffic have lower strengths than those noted above, or are expansive when wet, there are several options, including
These options are typically used in combination. Pedestrian applications can be placed on lower strength soils than those noted.
Pedestrian applications can be placed on lower strength soils than those noted.
The soil subgrade infiltration rate typically is far lower than the flow rate through the pavement, so some reservoir storage will usually be required to maximize the stormwater benefit of permeable pavement. Often times permeable pavement is designed to store a given design storm. For instance, Minnesota’s Minimal Impact Design Standards (MIDS) require a performance goal of managing 1.1 inches of runoff from the tributary impervious surfaces. For this design standard, the volume of the reservoir layer will be required to store 1.1 inches of stormwater runoff entering from the impervious area plus rainfall directly into the permeable pavement itself.
Infiltration of runoff into the subgrade provides more stormwater treatment benefit than filtering through the base and exiting via underdrains. For this reason, adding and underdrain at the bottom of the storage reservoir (on top of the subgrade soil) at sites with HSG A or B subgrade soil is typically not recommended. This is sometimes done to provide a “factor of safety.” This is often unnecessary and reduces the overall effectiveness of permeable pavement as a BMP.
\(d_p = ((d_c R) + P – (i/2 t_f)) / V_r\)
where
The maximum allowable depth of the reservoir layer is constrained by the maximum allowable drain time, which is calculated using the following equation.
\(d_{p-max} = (i/2 t_d) / V_r\)
where
The following design assumptions apply to the previous equations:
If the depth of crushed stone below the pavement (depth of reservoir, dp) is greater than the maximum allowable depth of reservoir, dp-max an underdrain should be added at the elevation of dp-max to provide an overflow. The storage volume in the pavements must account for the underlying infiltration rate and outflow through the underdrain. In this case, the design storm should be routed through the pavement to accurately determine the required reservoir depth.
If the depth of the base/subbase for the full infiltration system is excessive, (i.e. dp exceeds dmax) because, as an example, the design subgrade soil infiltration rate is not adequate to remove the water from the design storm within the designated period of time, then the design should include underdrains. The following procedure is for sizing the base/subbase for partial infiltration designs (i.e. contains underdrains). The same symbols apply, but with the following additions:
The outflow rate from underdrain(s) can be approximated by
\(q_u = k x m\)
This equation is based on Darcy’s Law, which summarizes several properties that groundwater exhibits while flowing in aquifers. Although the hydraulic conductivity (measure of the ease with which water can move through pore spaces of a material) of the aggregate subbase is very high (approximately17,000 feet/day or 8,500 inches/hour), the discharge rate through underdrains is limited by the cross sectional area of the pipe. As the storage volume above/around the underdrain(s) decreases (i.e., the hydraulic head or water pressure decreases), the base/subbase and in turn the underdrain(s) will drain increasingly slower. To account for this change in flow conditions within the subbase and underdrain(s) over time, a very conservative coefficient of permeability (k) of 100 feet/day per pipe can be used to approximate the average underdrain outflow rate.
Once the outflow rate through each underdrain has been approximated, the depth of the base/subbase needed to store the design storm can be determined by
\(d_p = D Q_u R + (P – fT) – q_u (T_{fil})n / V_r\)
To estimate the number of underdrain pipes (n), take the dimension of the parking lot in the direction the pipes are to be placed and divide by the desired spacing between pipes – round down to the nearest whole number.
Tfill = T when the underdrains are at the bottom of the subbase. Tfil = ½T (approximation) when the underdrains are raised.
With full infiltration systems, the maximum allowable drain time (dmax) needs to be calculated to make sure the stored water within the base/subbase does not take too long to infiltrate into the soil subgrade. However, for partial infiltration systems, there is a second method of storage water discharge, namely the underdrains. The depth and number of underdrains are variables that can be adjusted (unlike the infiltration rate into the soil subgrade) so that the actual drain time equals or is less than the maximum allowable drain time. If the discharge of the underdrains is included, then
\(d_{max} = fT_s+ q_uT_1 n / V_r = d_p\)
Rearranging the previous equation, the storage time during which the water is at or above the underdrain(s) (hours) is given by
\(T_1 = ((V_rd_p) – (fT_s)) / (q_u n)\)
The elevation of the pipe above the soil subgrade is then given by
\(d_{below} = f(T_s – T_1) / V_r\)
Permeable pavement can also be designed to augment detention storage needed for channel protection and/or flood control. The designer can model various approaches by factoring in storage within the base/subbase, expected infiltration and any outlet structures used as part of the design.
Once runoff passes through the surface of the permeable pavement system, designers should calculate outflow pathways to handle subsurface flows. Subsurface flows can be regulated using underdrains, the volume of storage in the reservoir layer, the bed slope of the reservoir layer, and/or a control structure at the outlet.
Once runoff passes through the surface of the permeable pavement system, designers should calculate outflow pathways to handle subsurface flows. Subsurface flows can be regulated using underdrains, the volume of storage in the reservoir layer, the bed slope of the reservoir layer, and/or a control structure at the outlet.
Permeable pavements can be designed to reduce nutrient loadings to the ground or surface waters. The design needs to be specifically designed to capture phosphorus. The permeable pavement system can also be designed to capture nitrogen, although it is important to note that nitrogen and phosphorus each require specific designs to facilitate their removal from stormwater. The following paragraphs describe the design characteristics necessary for the removal of phosphorus and nitrogen.
A study by Bean (2007a) showed higher nitrate concentrations in the exfiltrate compared to the infiltrate. Nitrogen reduction capabilities of permeable pavement can be enhanced in partial infiltration designs that detain water in the base/subbase for over 24 hours. This time is required to ensure complete de-nitrification occurs.
PICP can use specially coated aggregates in the joints and bedding and all systems can use them in the base to reduce phosphorous. Coated aggregates (sometimes called “engineered aggregates”) have an effective life of seven to ten years and target the removal of dissolved phosphorous, according to manufacturer’s literature.
A filter layer made of sand or fine aggregate placed under or sandwiched within permeable pavement bases are occasionally used as a means to reduce nutrients. This layer can be enhanced with iron filings for phosphorous reduction (Erickson 2010). Their effectiveness, initial cost, reduction in flow rates, and maintenance costs should be weighed against other design options for nutrient reductions. Sand filters will incur additional construction expense and this can be reduced by placing sand filters under the subbase at the down slope end of a permeable pavement. The disadvantage of sand filters is that they will eventually require removal and restoration if continued phosphorus reduction credit is desired. Concentrating their location in the down slope areas of the site can help reduce future maintenance costs and site disruptions.
A second approach useful for nutrient and TSS reduction can occur on sloping sites by creating intermittent berms in the soil subgrade. These enable settlement of suspended solids and encourage de-nitrification if appropriately designed. A third alternative is using a “treatment train” approach where a permeable pavement initially filters runoff and the remaining water outflows to bioswales or rain gardens adjacent to the pavement for additional processing and nutrient reduction. There may be additional BMPs used to remove nutrients as the water moves through the watershed.
Prior to infiltration testing, several soil borings should be taken with an auger to assess the consistency of the soil type and horizons. Boring depths should be at least 2 feet deeper than the anticipated depth of the permeable pavement. At least one soil boring must be taken to confirm the underlying soil properties at the depth where infiltration is designed to occur (i.e., to ensure that the depth to water table, depth to bedrock, or karst is defined). The depth to bedrock can be highly variable over small areas, so multiple borings should be conducted in areas having shallow bedrock.
For sites with a consistent soil type, a minimum of one soil permeability test per ASTM D3385 or D5093 must be taken per 25,000 square feet of planned permeable pavement surface area. In most cases where the soil type is consistent throughout the site, a single soil test is sufficient for applications less than 25,000 sf. Additional infiltration tests are required per 25,000 square feet of planned permeable pavement area if the soil borings reveal changes in soil type. The median test result from all infiltration test values should be used as the design infiltration rate. Soil infiltration testing should be conducted within any confining layers that are found within five feet of the bottom of a proposed permeable pavement system.
For sites with a consistent soil type, a minimum of one soil permeability test per ASTM D3385 or D5093 must be taken per 25,000 square feet of planned permeable pavement surface area. In most cases where the soil type is consistent throughout the site, a single soil test is sufficient for applications less than 25,000 sf. Additional infiltration tests are required per 25,000 square feet of planned permeable pavement area if the soil borings reveal changes in soil type. The median test result from all infiltration test values should be used as the design infiltration rate. Soil infiltration testing should be conducted within any confining layers that are found within five feet of the bottom of a proposed permeable pavement system.
Permeable pavement designs should include methods to convey larger storms (e.g., 2-year, 10-year) to the storm drain system. The following is a list of methods that accomplish this:
The reservoir below the permeable pavement surface should be composed of clean, washed crushed stone aggregate and thickness sized for both the storm event to be stored and the structural requirements of the expected traffic loading. The recommended minimum void ratio should be 40% per ASTM C29. Reservoir base layers for pervious concrete are typically washed AASHTO No. 57 stone and those for porous asphalt are AASHTO No. 2, 3, or 5. PICP uses AASHTO No. 2, 3, or 4 stone.
If exposed to vehicular loads, all crushed stone should be Minnesota Department of Transportation (MnDOT) Class A or B coarse aggregate, minimum 80% crushed, typically granite, basalt, gneiss, trap rock, diabase, gabbro, or similar material. The maximum Los Angeles Rattler Loss should be 35% per AASHTO T-96 and no greater loss than 10% per AASHTO T-104 Magnesium Sulfate Soundness Test on the non-igneous portions and as modified by the MnDOT Laboratory Manual (MNDOT 2005). Limestone aggregates not meeting these requirements are not recommended in vehicular applications. Class C and D aggregates may be used in areas subject only to pedestrian traffic.
Underdrains install quickly when placed on or in the soil subgrade, surrounded by stone base materials. The outflow portion at the end is not perforated and is raised to a designed height that allows for some water detention prior to outflow. Placement at this elevation also protects the pipe with aggregate during base compaction. For permeable pavement bases/subbases using 2 or 3 inch maximum size aggregates, underdrain pipes with them should be surrounded with at least 4 inches of ASTM No. 57 (maximum 1 inch size aggregate) to protect the pipes during compaction. An underdrain(s) can also be installed and capped at a downstream structure as an option for future use if maintenance observations indicate a reduction in the soil permeability.
Proper maintenance of permeable pavement is crucial for ensuring its longevity and functionality. Some portions of the maintenance plan require planning during the design stages. These items are noted below.
Permeable pavement material specifications vary according to the specific pavement product selected. The following table describes general material specifications for the components installed beneath the permeable pavement. Note that the size of stone materials used in the reservoir and filter layers differ depending whether the system is pervious concrete, porous asphalt or permeable interlocking concrete pavement.
Summary of specifications for materials under the pavement surface. For more information, see the footnote (1). Reference or links to any specific commercial product, process, or service by trade name, trademark, service mark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favoring by the Minnesota Pollution Control Agency.
Link to this table
Bedding/choker layer |
|
Washed free of fines |
Reservoir Layer |
|
Stone layer thickness based on the pavement structural and hydraulic requirements. Stonewashed and free of fines. Recommended minimum void ratio = 0.4. |
Underdrain (optional) | Use 4 to 6 inch diameter perforated PVC (AASHTO M-252) pipe or corrugated polyethylene pipe. Perforated pipe installed for the full length of the permeable pavement cell, and non-perforated pipe, as needed,connected to storm drainage system. | |
Filter Layer (optional) | Sand filter layeris separated from base above and native soils with geotextile. Sand layer typically ASTM C33 gradation, 6 to 12 inches thick. | The Filter Layer is REQUIRED if using the permeable pavement system to meet permit requirements. The sand layer may require a choker layer on surface to provide transition to base layerstone. |
Geotextile(optional) | Comply with AASHTO M-288 Standard Specification for Geotextile Specification for Highway Applications, drainage and separation applications, Class I or II. Porous asphalt industry recommends non-woven geotextile. | |
Impermeable Liner | Use a minimum 30mil PVC liner covered by 12 ounce/square yard non-woven geotextile. EPDM and HDPE liner material is also acceptable. | |
Observation Well | Use a perforated 4 to 6 inch vertical PVC pipe (AASHTO M-252) with a lockable cap, installedflush with the surface (or under pavers). |
1for additional information on materials referenced in this table (e.g. stone dimensions), see the following links:
A general comparison of different permeable pavements is provided in the following table. Designers should consult industry association and manufacturer’s technical specifications for specific criteria and guidance.
This table shows summarizes specifications for permeable pavement.
Link to this table.
Permeable Pavers | Surface open area: typically 5% to 15%; minimum thickness: 3 inches for vehicles; minimum compressive strength: 8,000 psi | Concrete pavers conform to ASTM C936 and clay pavers C1272. Reservoir layer required to support the structural load. |
Pervious Concrete |
|
May not require a reservoir layer to support loads, but a layer is required for storage/infiltration. In no case should plain steel rebar or mesh be used in pervious concrete as this invites corrosion. |
Porous Asphalt |
|
Reservoir layer contributes to structural load support. |
There are additional design considerations for permeable pavement, including use of permeable pavement in karst terrain and winter considerations.
A detailed geotechnical investigation may be required for any kind of stormwater design in karst terrain. Permeable pavements, as with other infiltration practices, are not recommended at sites with known karst features as they can cause the formation of sinkholes and can provide a direct link for stormwater to access groundwater without providing any treatment.
Plowed snow piles should be located in adjacent grassy areas so that sediments and pollutants in snowmelt are partially treated before they reach all permeable pavements. Sand is not recommended for winter traction over permeable pavements. If sand is applied, it must be removed with vacuum cleaning in the spring. Traction can be accomplished on PICP using jointing stone materials, some of which will find its way into the joints by springtime. A significant winter advantage of permeable pavements is that they require less deicing materials than their impervious counterparts. Use of deicing material on permeable pavement is therefore not recommended.
Permeable pavements can be used as opportunities for public education with signs explaining how they work. Infiltration demonstrations also help show how the pavements work. Signs provide a reminder to maintenance crews of their presence and list maintenance do’s and don’ts specific to the permeable pavement type.