m |
|||
Line 12: | Line 12: | ||
==Materials specifications - filter media== | ==Materials specifications - filter media== | ||
<!-- | <!-- | ||
− | < | + | <noinclude>===Soil medium / filter media content=== |
====Mix A: Water quality blend==== | ====Mix A: Water quality blend==== | ||
Line 34: | Line 34: | ||
Gravel Filter Specifications - Underdrain gravel blanket shall be double washed stone, 1 to 1½ inches in size. Pea Gravel shall be washed, river-run, round diameter, ¼ - ½ inch in size. | Gravel Filter Specifications - Underdrain gravel blanket shall be double washed stone, 1 to 1½ inches in size. Pea Gravel shall be washed, river-run, round diameter, ¼ - ½ inch in size. | ||
− | Mulch Content and Depth - Fresh shredded bark mulch (Mn/DOT Type 6) should be used when possible to maximize nitrogen retention. If aged mulch is used, use the shredded type instead of the “chip” variety to minimize floating action. The mulch layer should not exceed 3 inch in depth. Too much mulch can restrict oxygen flow to roots. In addition, mulch should not be mounded around the base of plants since this encourages damage from pests and diseases.</ | + | Mulch Content and Depth - Fresh shredded bark mulch (Mn/DOT Type 6) should be used when possible to maximize nitrogen retention. If aged mulch is used, use the shredded type instead of the “chip” variety to minimize floating action. The mulch layer should not exceed 3 inch in depth. Too much mulch can restrict oxygen flow to roots. In addition, mulch should not be mounded around the base of plants since this encourages damage from pests and diseases.</noinclude> |
--> | --> | ||
This page provides construction details, materials specifications and construction specifications for bioretention systems.
CADD based details for bioretention are contained in the Computer-aided design and drafting (CAD/CADD) drawings section. The following details, with specifications, have been created for bioretention systems:
Research has shown that minimum bioretention soil media depth needed varies depending on the target pollutant(s).
Minimum bioretention soil media depths recommended to target specific stormwater pollutants. From Hunt et al. (2012) and Hathaway et al., (2011). NOTE: The Construction Stormwater permit requires a 3 foot separation from the bottom of an infiltration practice and bedrock or seasonally saturated soils.
Link to this table
Pollutant | Depth of Treatment with upturned elbow or elevated underdrain | Depth of Treatment without underdrain or with underdrain at bottom | Minimum depth |
---|---|---|---|
Total suspended solids (TSS) | Top 2 to 3 inches of bioretention soil media | Top 2 to 3 inches of bioretention soil media | Not applicable for TSS because minimum depth needed for plant survival and growth is greater than minimum depth needed for TSS reduction |
Metals | Top 8 inches of bioretention soil media | Top 8 inches of bioretention soil media | Not applicable for metals because minimum depth needed for plant survival and growth is greater than minimum depth needed for metals reduction |
Hydrocarbons | 3 to 4 inch Mulch layer, top 1 inch of bioretention soil media | 3 to 4 inches Mulch layer, top 1 inch of bioretention soil media | Not applicable for hydrocarbons because minimum depth needed for plant survival and growth is greater than minimum depth needed for hydrocarbons reduction |
Nitrogen | From top to bottom of bioretention soil media; Internal Water Storage Zone (IWS) improves exfiltration, thereby reducing pollutant load to the receiving stream, and also improves nitrogen removal because the longer retention time allows denitrification to occur underanoxic conditions. | From top to bottom of bioretention soil media | Retention time is important, so deeper media is preferred (3 foot minimum) |
Particulate phosphorus | Top 2 to 3 inches of bioretention soil media. | Top 2 to 3 inches of bioretention soil media. | Not applicable for particulate phosphorus because minimum depth needed for plant survival and growth is greater than minimum depth needed for particulate phosphorus reduction |
Dissolved phosphorus | From top of media to top of submerged zone. Saturated conditions cause P to not be effectively stored in submerged zone. | From top to bottom of bioretention soil media | Minimum 2 feet, but 3 feet recommended as a conservative value; if IWS is included, keep top of submerged zone at least 1.5 to 2 feet from surface of media |
Pathogens | From top of soil to top of submerged zone. | From top to bottom of bioretention soil media | Minimum 2 feet; if IWS is included, keep top of submerged zone at least 2 feet from surface of media |
Temperature | From top to bottom of bioretention soil media; Internal Water Storage Zone (IWS) improves exfiltration, thereby reducing volume of warm runoff discharged to the receiving stream, and also improves thermal pollution abatement because the longer retention time allows runoff to cool more before discharge. | From top to bottom of bioretention soil media | Minimum 3 feet, with 4 feet preferred |
The following performance specifications are applicable to all bioretention media.
The following additional bioretention growing media performance specifications are required to receive P reduction credit.
A well blended, homogenous mixture of
It is assumed this mix will leach phosphorus. When an underdrain is utilized a soil phosphorus test is needed to receive water quality credits for the portion of stormwater captured by the underdrain. The phosphorus index (P-index) for the soil must be low, between 10 and 30 milligrams per kilogram when using the Mehlich-3 test. This is enough phosphorus to support plant growth without exporting phosphorus from the cell.
A well-blended, homogenous mixture of
It is assumed this mix will leach phosphorus. When an underdrain is utilized a soil phosphorus test is needed to receive water quality credits for the portion of stormwater captured by the underdrain. The phosphorus index (P-index) for the soil must be low, between 10 and 30 milligrams per kilogram when using the Mehlich-3 test. This is enough phosphorus to support plant growth without exporting phosphorus from the cell.
This mix is a homogenous soil mix of
A higher concentration of fines (12 percent) should be reserved for areas where nitrogen is the target pollutant. In areas where phosphorus is the target pollutant, a lower concentration of fines (8 percent) should be used. A soil phosphorus test using the Mehlich-3 method is recommended but not required to receive water quality credits. The phosphorus index (P-index) for the soil must be low, between 10 and 30 milligrams per kilogram. This is enough phosphorus to support plant growth without exporting phosphorus from the cell. It is assumed this mix will not exceed the upper range of recommended values (30 milligrams per kilogram), although at lower concentrations of organic matter a soil test may be needed to confirm there is adequate phosphorus for plant growth.
Bioretention Soil Mix D soil shall be a mixture of coarse sand, compost and topsoil in proportions which meet the following:
Suggested mix ratio ranges are
A soil phosphorus test using the Mehlich-3 method is recommended but not required to receive water quality credits. The phosphorus index (P-index) for the soil must be low, between 10 and 30 milligrams per kilogram. This is enough phosphorus to support plant growth without exporting phosphorus from the cell. It is assumed this mix will not exceed the upper range of recommended values (30 milligrams per kilogram), although at lower concentrations of organic matter a soil test may be needed to confirm there is adequate phosphorus for plant growth.
Comparison of pros and cons of bioretention soil mixes
Link to this table.
Mix | Composition in original Manual | Proposed updated composition | Pros | Cons |
---|---|---|---|---|
A |
|
|
Likely to sorb more dissolved P and metals than mix B because it contains some fines; best for growth of most plants | Likely to leach P; if topsoil exceeds maximum allowed clay content, higher fines content could result in poor hydraulic performance and long drawdown times |
B |
|
|
Easy to mix; least likely to clog | Likely to leach P, lack of fines in mix results in less dissolved pollutant removal; harder on most plants than mix A because it dries out very quickly |
C | Not in original MN Stormwater Manual |
|
Likely to sorb more dissolved P and metals than mix B because it contains some fines; less likely to leach P than mix B because of low P content | Harder on most plants than mix A because it dries out very quickly. Research in Wisconsin indicates that in cold climates, excess of Na ions can promote displacement of Mg and Ca in the soil, which breaks down soil structure and decreases infiltration rate, and can also cause nutrient imbalances1 |
D | Not in original MN Stormwater Manual |
|
Best for pollutant removal, moisture retention, and growth of most plants; less likely to leach P than mix B because of low P content | Harder to find. Research in Wisconsin indicates that in cold climates, excess of Na ions can promote displacement of Mg and Ca in the soil, which breaks down soil structure and decreases infiltration rate, and can also cause nutrient imbalances |
E | Not in original manual |
|
High infiltration rates, relatively inexpensive | As compost breaks down, nutrients available for plants decreases |
F | Not in original manual |
|
Finer particles in loamy sand holds moisture for better plant growth | Lower infiltration rates, requires careful soil placement to avoid compaction, requires custom mixing |
1This problem can be avoided by minimizing salt use. Sodium absorption ratio (SAR) can be tested; if the SAR becomes too high, additions of gypsum (calcium sulfate) can be added to the soil to free the Na and allow it to be leached from the soil (Pitt et al in press).
2MnDOT Grade 2 compost is recommended.
Several other media are currently being tested. A few examples are listed below.
The following mix utilizes peat moss instead of compost.
This mix aims to maximize phosphorus removal in 2 ways:
This layered system is designed to minimize phosphorus in bioretention effluent.
Given that the construction of bioretention practices incorporates techniques or steps which may be considered non-traditional, it is recommended that the construction specifications include the following format and information: