m |
m |
||
Line 4: | Line 4: | ||
==Why is shallow depth to bedrock a concern?== | ==Why is shallow depth to bedrock a concern?== | ||
− | Shallow bedrock limits the depth of BMPs | + | Shallow bedrock limits the depth of BMPs, reduces the potential for subsurface infiltration, and reduces the depth over which treatment can occur. These sites present challenges to stormwater management; however these challenges can be managed. General guidelines for investigation and management are presented below. Special caution for steep slopes and fractured bedrock is urged. |
==How to investigate for shallow bedrock== | ==How to investigate for shallow bedrock== |
Sites with shallow bedrock are defined as having bedrock within 6 feet or less of the ground surface. Shallow bedrock is found in many portions of the state, but is a particular problem in the northeastern region. When installing an infiltration Best Management Practice (BMP), there must be at least 3 feet of separation between the base of the BMP and the bedrock per the Minnesota Construction General Permit (CGP). Bedrock at the 6 foot depth is a trigger to perform a geotechnical investigation to determine the location of the bedrock in the area in and around the proposed BMP to ensure the 3 foot separation can be achieved.
Shallow bedrock limits the depth of BMPs, reduces the potential for subsurface infiltration, and reduces the depth over which treatment can occur. These sites present challenges to stormwater management; however these challenges can be managed. General guidelines for investigation and management are presented below. Special caution for steep slopes and fractured bedrock is urged.
It is important to understand the general depth to bedrock over the entire site, but more specifically it is important to know the depth to bedrock in and around the area of the proposed BMP. Geotechnical investigations are recommended for all proposed stormwater facilities located in regions with shallow bedrock. The purpose of the investigation is to identify subsurface conditions which can pose an environmental concern or a construction hazard to a proposed stormwater management practice. The guidelines for how to investigate for shallow bedrock are summarized below. These guidelines should not be interpreted as all-inclusive. The size and complexity of the project will drive the extent of any subsurface investigation.
The investigation is designed to determine the nature and thickness of subsurface materials, including depth to bedrock and to the water table. Subsurface data for depth to groundwater may be acquired by soil boring or backhoe investigation. These field data should be supplemented by geophysical investigation techniques deemed appropriate by a qualified professional, which will show the location of the groundwater formations under the surface. The data listed below should be acquired under the direct supervision of a qualified geologist, geotechnical engineer, or soil scientist who is experienced in conducting such studies. Pertinent site information should include the following:
Borings should be located in order to provide representative area coverage of the proposed BMP facilities. The location of borings should be
The number of recommended borings is described below.
Borings should be extended to a minimum depth of 5 feet below the lowest proposed grade within the practice unless auger/backhoe refusal is encountered.
All material penetrated by the boring should be identified, as follows.
At least 1 figure showing the subsurface soil profile cross section through the proposed practice should be provided, showing confining layers, depth to bedrock, and water table (if encountered). It should extend through a central portion of the proposed practice, using the actual or projected boring data. A sketch map or formal construction plan indicating the location and dimension of the proposed practice and line of cross section should be included for reference, or as a base map for presentation of subsurface data.
The following investigations and guidelines are HIGHLY RECOMMENDED for infiltration and other BMPs proposed to be located in areas with shallow depth to bedrock.
The following table provides an overview of shallow bedrock and soil related design considerations for different structural practice groups. Guidelines for investigating all potential physical constraints to infiltration on a site are presented in the table at the bottom of this page.
Recommendations for structural BMP use in settings with shallow soils and shallow depth to bedrock.
Link to this table
BMP | Shallow soil and shallow depth to bedrock considerations |
---|---|
Bioretention | Should be constructed with an underdrain or liner if minimum separation distance of three (3) feet is not present between practice bottom and bedrock.1 |
Media filter |
|
Vegetative filter |
|
Infiltration trench or basin |
|
Stormwater ponds |
|
Constructed wetlands |
|
1A liner is required under the Construction Stormwater General Permit.
Procedures for investigating sites with potential constraints on stormwater infiltration.
Link to this table
Investigation | Shallow groundwater | Shallow bedrock | Soils with low infiltration capacity | Karst |
---|---|---|---|---|
Preliminary site investigation | NA | NA | NA | The level of detail required will depend on the likelihood that karst is present and any local regulations. The preliminary site investigation should include, but not be limited to (Pennsylvania BMP, 2009):
|
Subsurface material investigation | The investigation is designed to determine the depth to seasonally saturated soils. Subsurface data for depth to seasonally saturated soil may be acquired by soil boring or studying existing wells on the site, if present. These field data should be supplemented by geophysical investigation techniques deemed appropriate by a qualified professional, which will show the location of the saturated soil formations under the surface. The data listed below should be acquired under the direct supervision of a qualified geologist, geotechnical engineer, or soil scientist who is experienced in conducting such studies. Pertinent site information should include the following:
|
The investigation is designed to determine the nature and thickness of subsurface materials, including depth to bedrock. Subsurface data for depth to bedrock may be acquired by soil boring or backhoe investigation. These field data should be supplemented by geophysical investigation techniques deemed appropriate by a qualified professional, which will show the location of the bedrock formations under the surface. The data listed below should be acquired under the direct supervision of a qualified geologist, geotechnical engineer, or soil scientist who is experienced in conducting such studies. Pertinent site information should include the following:
|
Soil testing is recommended for all proposed stormwater facilities that plan to have a recharge or infiltration component to their design. Testing can be less rigorous than that for karst areas or sites with shallow bedrock and groundwater. The investigation is designed to identify and confirm the soil characteristics and determine their suitability, if any, for infiltration practices. | The investigation should determine the nature and thickness of subsurface materials, including depth to bedrock and the water table. Subsurface data may be acquired by backhoe excavation and/or soil boring. These field data should be supplemented by geophysical investigation techniques deemed appropriate by a qualified professional, which will show the location of karst formations under the surface. This is an iterative process that might need to be repeated until the desired detailed knowledge of the site is obtained and fully understood. The data listed below should be acquired under the direct supervision of a qualified and experienced karst scientist. Pertinent site information to collect includes the following:
|
Location of soil borings | Borings should be located in order to provide representative area coverage of the proposed BMP facilities. The location of borings should be:
|
Borings should be located in order to provide representative area coverage of the proposed BMP facilities. The location of borings should be:
|
Borings should be located in order to provide representative area coverage of the proposed BMP facilities. The location of borings should be:
|
The local variability typical of karst areas could mean that a very different subsurface could exist close by, perhaps as little as 6 inches away. To accommodate this variability, the number and type of borings must be carefully assessed. If the goal is to locate a boring down the center of a sinkhole, the previous geophysical tests or excavation results can show the likely single location to achieve that goal. If the goal is to “characterize” the entire site, then an evaluation needs to occur to determine the number and depth needed to adequately represent the site. Again, the analyst must acknowledge the extreme variability and recognize that details can easily be missed. Some general guidance for locating borings include:
|
Number of soil borings | The number of recommended borings is described below.
|
The number of recommended borings is described below.
|
The number of recommended borings is described below.
|
The number and depth of borings will depend entirely upon the results of the subsurface evaluation obtained from the observational, geophysical, and excavation studies, as well as other borings. There are no prescriptive guidelines to determine the number and depth of borings. These will have to be determined by the qualified staff conducting the BMP management evaluation and will be based upon the data needs of the installation. The borings must extend well below the bottom elevation of the designed BMP, however, to make sure that there are no karst features that will be encountered or impacted as a result of the installation. |
Depth of soil borings | Borings should be extended to a minimum depth of 5 feet below the lowest proposed grade within the practice unless auger/backhoe refusal is encountered. | Borings should be extended to a minimum depth of 5 feet below the lowest proposed grade within the practice unless auger/backhoe refusal is encountered. | Borings should be extended to a minimum depth of 5 feet below the lowest proposed grade within the practice unless auger/backhoe refusal is encountered. | The number and depth of borings will depend entirely upon the results of the subsurface evaluation obtained from the observational, geophysical, and excavation studies, as well as other borings. There are no prescriptive guidelines to determine the number and depth of borings. These will have to be determined by the qualified staff conducting the BMP management evaluation and will be based upon the data needs of the installation. The borings must extend well below the bottom elevation of the designed BMP, however, to make sure that there are no karst features that will be encountered or impacted as a result of the installation. At least 1 subsurface cross section should be provided for the BMP installation, showing confining layers, depth to bedrock, and water table (if encountered). It should extend through a central portion of the proposed installation, using the actual geophysical and boring data. A sketch map or formal construction plan indicating the location and dimension of the proposed practice and line of cross section should be included for reference, or as a base map for presentation of subsurface data. |
Identification of material | All material penetrated by the boring should be identified, as follows:
|
All material penetrated by the boring should be identified, as follows:
|
All material penetrated by the boring should be identified, as follows:
|
All material identified by the excavation and geophysical studies and penetrated by the boring should be identified, as follows:
|
Evaluation of findings | At least 1 figure showing the subsurface soil profile cross section through the proposed practice should be provided, showing confining layers, depth to bedrock, and water table (if encountered). It should extend through a central portion of the proposed practice, using the actual or projected boring data. A sketch map or formal construction plan indicating the location and dimension of the proposed practice and line of cross section should be included for reference, or as a base map for presentation of subsurface data. | At least 1 figure showing the subsurface soil profile cross section through the proposed practice should be provided, showing confining layers, depth to bedrock, and water table (if encountered). It should extend through a central portion of the proposed practice, using the actual or projected boring data. A sketch map or formal construction plan indicating the location and dimension of the proposed practice and line of cross section should be included for reference, or as a base map for presentation of subsurface data. | NA | At least 1 figure showing the subsurface soil profile cross section through the proposed practice should be provided, showing confining layers, depth to bedrock, and water table (if encountered). It should extend through a central portion of the proposed practice, using the actual or projected boring data. A sketch map or formal construction plan indicating the location and dimension of the proposed practice and line of cross section should be included for reference, or as a base map for presentation of subsurface data. |
Infiltration rate testing | NA | NA | Soil permeability should be determined in the field using the following procedure (MDE, 2000), or an accepted alternative method.
|
NA |
Geophysical and dye techniques | NA | NA | NA | Stormwater managers in need of subsurface geophysical surveys are encouraged to obtain the services of a qualified geophysicist experienced in karst geology. Some of the geophysical techniques available for use in karst terrain include: seismic refraction, ground-penetrating radar, and electric resistivity. The surest way to determine the flow path of water in karst geology is to inject dye into the karst feature (sinkhole or fracture) and watch to see where it emerges, usually from a spring. The emergence of a known dye from a spring grants certainty to a suspicion that ground water moves in a particular pattern. Dye tracing can vary substantially in cost depending upon the local karst complexity, but it can be a reasonably priced alternative, especially when the certainty is needed. |