For design purposes, there are two ways of determining the soil infiltration rate. The first, and preferred method, is to field-test the soil infiltration rate using appropriate methods described below. The other method uses the typical infiltration rate of the most restrictive underlying soil (determined during soil borings).

If infiltration rate measurements are made, a minimum of one infiltration test in a soil pit must be completed at the elevation from which exfiltration would occur (i.e. interface of gravel drainage layer and in situ soil). When the SCM surface area is between 1000 and 5000 square feet, two soil pit measurements are needed. Between 5000 and 10000 square feet of surface area, a total of three soil pit infiltration measurements should be made. Each additional 5000 square feet of surface area triggers an additional soil pit.

Recommended number of soil borings, pits or permeameter tests for bioretention design. Designers select one of these methods.
Link to this table

Surface area of stormwater control measure (BMP)(ft2) Borings Pits Permeameter tests
< 1000 1 1 5
1000 to 5000 2 2 10
5000 to 10000 3 3 15
>10000 41 41 202

1an additional soil boring or pit should be completed for each additional 2,500 ft2 above 12,500 ft2
2an additional five permeameter tests should be completed for each additional 5,000 ft2 above 15,000 ft2


The median measured infiltration rate should be utilized for design. Soil pits should be dug during the design phase and should be a minimum of two feet in diameter for measurement of infiltration rate. Infiltration testing in the soil pit can be completed with a double-ring infiltrometer or by filling the pit with water and measuring stage versus time. If the infiltration rate in the first pit is greater than 2 inches per hour, no additional pits shall be needed.

Alternatively, a Modified Philip-Dunne permeameter can be used to field test infiltration rate. Modified Philip-Dunne permeameter tests may be made in conjunction with soil borings or may be completed using a handheld soil auger. Borings should be lined with a plastic sleeve to prevent infiltration from the sides of the borehole (i.e. restrict flow to vertical infiltration). Soil borings should be filled with water. The time for the borehole to drain should be recorded and divided by the initial ponding depth in the borehole to provide an infiltration rate measurement. The design infiltration rate should be the lower of the median soil pit infiltration rate or the median borehole method infiltration rate.

illustration for determining number of permeameter tests
Illustration of how to determine the appropriate number of permeameter samples. When the standard deviation for all measurements flattens out with successive measurements, collection of additional permeameter tests may be halted, provided a minimum of 5 samples have been collected.

NOTE: In the table above, the recommended number of permeameter tests increases by 5 tests per each additional 5000 square feet of surface area. For larger sites, this can result in a very large number of samples. There may be situations where fewer permeameter tests may be used (5 is the minimum) . For example, in situations where the variability in saturated hydraulic conductivity between measurements is not great, fewer samples may be taken. One method for determining the number of samples is to plot standard deviation versus number of samples. Measurements may be halted when the standard deviation becomes relatively constant from one sample to the next. In the example to the right the standard deviation flattens at about 7 to 10 samples. Therefore, 7 to 10 samples would be an appropriate number of samples for this situation.

For information on conducting soil infiltration rate measurements, see Determining soil infiltration rates.

If the infiltration rate is not measured, use the table below to estimate an infiltration rate for the design of infiltration practices. These infiltration rates represent the long-term infiltration capacity of a practice and are not meant to exhibit the capacity of the soils in the natural state.

Caution: Select the design infiltration rate from the table based on the least permeable soil horizon within the first 5 feet below the bottom elevation of the proposed infiltration practice


Caution: The table for design infiltration rates has been modified. Field testing is recommended for gravelly soils (HSG A; GW and GP soils; gravel and sandy gravel soils). If field-measured soil infiltration rates exceed 8.3 inches per hour, the Construction Stormwater permit requires the soils be amended. Guidance on amending these soils can be found here.

Design infiltration rates, in inches per hour, for A, B, C, and D soil groups. Corresponding USDA soil classification and Unified soil Classifications are included. Note that A and B soils have two infiltration rates that are a function of soil texture.*
The values shown in this table are for uncompacted soils. This table can be used as a guide to determine if a soil is compacted. For information on alleviating compacted soils, link here. If a soil is compacted, reduce the soil infiltration rate by one level (e.g. for a compacted B(SM) use the infiltration rate for a B(MH) soil).

Link to this table

Hydrologic soil group Infiltration rate (inches/hour) Infiltration rate (centimeters/hour) Soil textures Corresponding Unified Soil ClassificationSuperscript text
A
Although a value of 1.63 inches per hour (4.14 centimeters per hour) may be used, it is Highly recommended that you conduct field infiltration tests or amend soils.b See Guidance for amending soils with rapid or high infiltration rates and Determining soil infiltration rates.

gravel
sandy gravel

GW - Well-graded gravels, fine to coarse gravel
GP - Poorly graded gravel
1.63a 4.14

silty gravels
gravelly sands
sand

GM - Silty gravel
SW - Well-graded sand, fine to coarse sand

0.8 2.03

sand
loamy sand
sandy loam

SP - Poorly graded sand

B
0.45 1.14 silty sands SM - Silty sand
0.3 0.76 loam, silt loam MH - Elastic silt
C
0.2 0.51 Sandy clay loam, silts ML - Silt
D
0.06 0.15

clay loam
silty clay loam
sandy clay
silty clay
clay

GC - Clayey gravel
SC - Clayey sand
CL - Lean clay
OL - Organic silt
CH - Fat clay

OH - Organic clay, organic silt

1For Unified Soil Classification, we show the basic text for each soil type. For more detailed descriptions, see the following links: The Unified Soil Classification System, CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS) UNIFIED SOIL CLASSIFICATION SYSTEM

  • NOTE that this table has been updated from Version 2.X of the Minnesota Stormwater Manual. The higher infiltration rate for B soils was decreased from 0.6 inches per hour to 0.45 inches per hour and a value of 0.06 is used for D soils (instead of < 0.2 in/hr).

Source: Thirty guidance manuals and many other stormwater references were reviewed to compile recommended infiltration rates. All of these sources use the following studies as the basis for their recommended infiltration rates: (1) Rawls, Brakensiek and Saxton (1982); (2) Rawls, Gimenez and Grossman (1998); (3) Bouwer and Rice (1984); and (4) Urban Hydrology for Small Watersheds (NRCS). SWWD, 2005, provides field documented data that supports the proposed infiltration rates. (view reference list)
aThis rate is consistent with the infiltration rate provided for the lower end of the Hydrologic Soil Group A soils in the Stormwater post-construction technical standards, Wisconsin Department of Natural Resources Conservation Practice Standards.
bThe infiltration rates in this table are recommended values for sizing stormwater practices based on information collected from soil borings or pits. A group of technical experts developed the table for the original Minnesota Stormwater Manual in 2005. Additional technical review resulted in an update to the table in 2011. Over the past 5 to 7 years, several government agencies revised or developed guidance for designing infiltration practices. Several states now require or strongly recommend field infiltration tests. Examples include North Carolina, New York, Georgia, and the City of Philadelphia. The states of Washington and Maine strongly recommend field testing for infiltration rates, but both states allow grain size analyses in the determination of infiltration rates. The Minnesota Stormwater Manual strongly recommends field testing for infiltration rate, but allows information from soil borings or pits to be used in determining infiltration rate. A literature review suggests the values in the design infiltration rate table are not appropriate for soils with very high infiltration rates. This includes gravels, sandy gravels, and uniformly graded sands. Infiltration rates for these geologic materials are higher than indicated in the table.
References: Clapp, R. B., and George M. Hornberger. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research. 14:4:601–604; Moynihan, K., and Vasconcelos, J. 2014. SWMM Modeling of a Rural Watershed in the Lower Coastal Plains of the United States. Journal of Water Management Modeling. C372; Rawls, W.J., D. Gimenez, and R. Grossman. 1998. Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity Transactions of the ASAE. VOL. 41(4): 983-988; Saxton, K.E., and W. J. Rawls. 2005. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal. 70:5:1569-1578.



The infiltration capacity and existing hydrologic regime of natural basins are inherently different than constructed practices and may not meet MPCA Permit requirements for constructed practices. In the event that a natural depression is being proposed to be used as an infiltration system, the design engineer must demonstrate the following information:

  • infiltration capacity of the system under existing conditions (inches per hour)
  • existing drawdown time for the high water level (HWL) and a natural overflow elevation.

The design engineer should also demonstrate that operation of the natural depression under post-development conditions mimics the hydrology of the system under pre-development conditions.

If the infiltration rates are measured, the tests shall be conducted at the proposed bottom elevation of the infiltration practice. If the infiltration rate is measured with a double-ring infiltrometer the requirements of ASTM D3385 (Standard test method for infiltration rate of soils in field using double-ring infiltrometer) should be used for the field test.

Warning: The measured infiltration rate shall be divided by a safety factor of 2.

The safety factor of 2 adjusts the measured infiltration rates for the occurrence of less permeable soil horizons below the surface and the potential variability in the subsurface soil horizons throughout the infiltration site. This safety factor also accounts for the long-term infiltration capacity of the stormwater management facility.