This page provides information on the water quality benefits of green stormwater infrastructure (GSI) practices ( best management practices). The water quality benefit of a practice is defined by its ability to attenuate pollutants from stormwater runoff and prevent them from reaching receiving waters. All GSI practices provide water quality benefits since that is their primary function.
These benefits vary between each practice, primarily as a result of the mechanism by which pollutants are attenuated.
Practice | Water quality benefit | Notes |
---|---|---|
Bioretention and infiltration | ||
Tree trench and tree box | ||
Green roof | ||
Vegetated swale | ||
Vegetated filter strip | ||
Permeable pavement | ||
Constructed wetland | ||
Rainwater harvesting | ||
Level of benefit: ◯ - none; ◔; - small; ◑ - moderate; ◕ - large; ● - very high |
Green infrastructure (GI) encompasses a wide array of practices, including stormwater management. Green stormwater infrastructure (GSI) encompasses a variety of practices primarily designed for managing stormwater runoff but that provide additional benefits such as habitat or aesthetic value.
There is no universal definition of GI or GSI (link here fore more information). Consequently, the terms are often interchanged, leading to confusion and misinterpretation. GSI practices are designed to function as stormwater practices first (e.g. flood control, treatment of runoff, volume control), but they can provide additional benefits. Though designed for stormwater function, GSI practices, where appropriate, should be designed to deliver multiple benefits (often termed "multiple stacked benefits". For more information on green infrastructure, ecosystem services, and sustainability, link to Multiple benefits of green infrastructure and role of green infrastructure in sustainability and ecosystem services.
The adjacent table provides a summary of estimated pollutant removal for stormwater bmps. However, pollutant removal is a function of many factors, including design, construction, and maintenance of the BMP; quality of incoming stormwater; time of year; rainfall and watershed characteristics; and so on. The user is encouraged to read the section called Factors affecting pollutant removal.
Median pollutant removal percentages for several stormwater BMPs. Sources. More detailed information and ranges of values can be found in other locations in this manual, as indicated in the table. NSD - not sufficient data. NOTE: Some filtration bmps, such as biofiltration, provide some infiltration. The values for filtration practices in this table are for filtered water.
Link to this table
Practice | TSS | TP | PP | DP | TN | Metals1 | Bacteria | Hydrocarbons |
---|---|---|---|---|---|---|---|---|
Infiltration2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Biofiltration and Tree trench/tree box with underdrain | 80 | link to table | link to table | link to table | 50 | 35 | 95 | 80 |
Sand filter | 85 | 50 | 85 | 0 | 35 | 80 | 50 | 80 |
Iron enhanced sand filter | 85 | 65 or 746 | 85 | 40 or 606 | 35 | 80 | 50 | 80 |
Dry swale (no check dams) | 68 | link to table | link to table | link to table | 35 | 80 | 0 | 80 |
Wet swale (no check dams) | 35 | 0 | 0 | 0 | 15 | 35 | 35 | NSD |
Constructed wet ponds4, 5 | 84 | 50 or 685 | 84 | 8 or 485 | 30 | 60 | 70 | 80 |
Constructed wetlands | 73 | 38 | 69 | 0 | 30 | 60 | 70 | 80 |
Permeable pavement (with underdrain) | 74 | 41 | 74 | 0 | NSD | NSD | NSD | NSD |
Green roofs | 85 | 0 | 0 | 0 | NSD | NSD | NSD | NSD |
Vegetated (grass) filter | 68 | 0 | 0 | 0 | NSD | NSD | NSD | NSD |
Harvest and reuse | Removal is 100% for captured water that is infiltrated. For water captured and routed to another practice, use the removal values for that practice. |
TSS=Total suspended solids, TP=Total phosphorus, PP=Particulate phosphorus, DP=Dissolved phosphorus, TN=Total nitrogen
1Data for metals is based on the average of data for zinc and copper
2BMPs designed to infiltrate stormwater runoff, such as infiltration basin/trench, bioinfiltration, permeable pavement with no underdrain, tree trenches with no underdrain, and BMPs with raised underdrains.
3Pollutant removal is 100 percent for the volume infiltrated, 0 for water bypassing the BMP. For filtered water, see values for other BMPs in the table.
4Dry ponds do not receive credit for volume or pollutant removal
5Removal is for Design Level 2. If an iron-enhanced pond bench is included, an additional 40 percent credit is given for dissolved phosphorus. Use the lower values if no iron bench exists and the higher value if an iron bench exists.
6Lower values are for Tier 1 design. Higher values are for Tier 2 design.
Bioretention is an excellent stormwater treatment practice due to the variety of pollutant removal mechanisms, including vegetative filtering, settling, evaporation, infiltration, transpiration, biological and microbiological uptake, and soil adsorption. Bioretention can be designed as an effective infiltration / recharge practice, particularly when parent soils have high permeability (> ~ 0.5 inches per hour). Bioretention designed for infiltration ( bioinfiltration) removes 100 percent of pollutants for the portion of runoff water that is infiltrated, although there may be impacts to shallow groundwater. Bioretention designed as filtration ( biofiltration) employs engineered media that is effective at removing solids, most metals, and most organic chemicals. Removal of phosphorus depends on the media (link here). Links to water quality information for bioretention - [1]; [2]
The following design considerations can improve the water quality function of bioretention practices.
Tree trenches and tree boxes are an excellent stormwater treatment practice due to the variety of pollutant removal mechanisms including vegetative filtering, settling, evaporation, infiltration, transpiration, biological and microbiological uptake, and soil adsorption. Tree trenches and tree boxes can be designed as an effective infiltration / recharge practice, particularly when parent soils have high permeability (> ~ 0.5 inches per hour). Link to water quality information for tree trench/tree box - [3]
The following design considerations can improve the water quality benefits of tree trenches.
Permeable pavement allows for the absorption and infiltration of rainwater and snow melt onsite. It can reduce the concentration of some pollutants either physically (by trapping it in the pavement or soil), chemically (bacteria and other microbes can break down and utilize some pollutants), or biologically (plants that grow in-between some types of pavers can trap and store pollutants)5. Many of the pollutant concentrations that can be reduced from permeable pavement include Total Phosphorus, Dissolved Phosphorus, Total Suspended Solids, and Chlorides. Additionally, permeable pavements can reduce the need for road salt6.
Green roofs have the ability to improve water quality, though the source of water should be taken into consideration, which can affect the effluent quality. Much of the water green roofs receive is in the form of precipitation which is less polluted compared to urban stormwater runoff. That being said, green roofs receive relatively clean water and are less likely to receive stormwater runoff and make a large impact on improving water quality. Nevertheless, green roofs can have a positive impact on water quality. A New York City (NYC) study monitored 4 green roofs over a period of 23 months and 100 storm events found that the pH runoff from green roofs was consistently higher than that from the roofs and precipitation with observed average pH’s equal to 7.28, 6.27, and 4.82 for the green roods, control roofs, and precipitations, respectively. As a result, green roods neutralized the acid rain. One thing to consider with green roofs is that influent Phosphorus (P) concentrations are lower than that of urban stormwater runoff. As a result, it is possible for green roofs to introduce P into their effluent rather than remove P since rainwater naturally has very low concentrations of P. The NYC study showed higher P concentration in green roof runoff than control roof runoff1. The probable source of phosphorus to runoff from the green roofs is fertilizer and soil2.
Water re-use and water harvesting facilities can help improve water quality by capturing stormwater runoff and reduce offsite discharges into the storm sewer system and nearby water resources. The nature of stormwater re-use facilities vary widely, thus there is great variability in their effectiveness to remove storm water pollutants. Most water re-use projects have been developed to meet non-potable water demands, such as agriculture, landscape, public parks, irrigation, etc. In these cases, the stormwater that contains pollutants (phosphorus, sediment, excessive nutrient, metals, etc.) is captured for re-use and is reused for irrigation as opposed to being discharged to a body of water, possibly leading to the deterioration of that water body. Moreover, water re-use systems can be used to create or enhance wetlands and riparian (stream) habitats for streams that have been impaired or dried from water diversion. These systems are likely to remove more pollutants than those system which are used for the non-potable uses above.
Stormwater Ponds and wetlands are BMPs designed and constructed to settle out pollutants and nutrients (nitrogen, phosphorus, sediment, etc.) that are readily found in stormwater runoff. The removal of these pollutants helps prevent the degradation of downstream water bodies. It’s important to consider the timely and proper maintenance of stormwater ponds so that they function as designed. The lack of a proper maintenance plan for stormwater ponds can compromise their efficiency to remove pollutants and improve water quality. If not maintained properly, excess pollutants in ponds and wetlands may become sources of water quality issues as a poor water color/clarity/odor, low dissolved oxygen can lead to plant die off, and prevalence of algal blooms. Excess sediment can also clog structures within the BMPs impacting their overall effectiveness.
Vegetated swales that are designed and constructed with an impermeable check dam with/without an underdrain can improve water quality through treatment of polluted stormwater runoff through sedimentation, filtration, and infiltration. A study performed by the university of Maryland found a reduction of mass pollutant loads for Total Suspended Solids (TSS) by 38% - 62%, nitrate by 92% - 85%, and nitrite by 54% - 71%7. For swales with underdrains, the soil mix design should be carefully selected to ensure that there is no net increase in the export of pollutants, primarily nitrogen and phosphorus. For example, filtration media mixtures that contain a large percentage of compost can potentially export nutrients, such as nitrate and phosphorus, instead of retaining them.
Sand filters are an effective BMP for removing several common pollutants in stormwater runoff and can increase water quality to downstream water resources. Pollutants are removed through sedimentation and filtration processes. The highest pollutant removal efficiencies include sediment, biochemical oxygen demand (BOD), and fecal coliform bacteria. There is a moderate removal efficiency for total metals, a lower removal efficiency for nutrients8. Lab effectiveness studies have shown a reduction in 99.98% protozoan, 90% - 99% bacterial, and 80% - 98% E. coli removal rates, respectively9.