m (→Green Roofs) |
|||
Line 96: | Line 96: | ||
==Water Re-use and Harvesting== | ==Water Re-use and Harvesting== | ||
− | + | [[File:Cistern located at Mississippi Watershed Management Organization 2.jpg|300px|left|alt=This picture shows a cistern located at Mississippi Watershed Management Organization|<font size=3>Cistern located at Mississippi Watershed Management Organization. Photo by MWMO Staff.</font size>]] | |
− | + | Water re-use and water harvesting facilities can help improve water quality by capturing stormwater runoff and reducing offsite discharges into the storm sewer system and nearby water resources. The nature of stormwater re-use facilities varies widely, thus there is great variability in their effectiveness to remove storm water pollutants. Most water re-use projects have been developed to meet non-potable water demands, such as agriculture, landscape, public parks, irrigation, etc. In these cases, the captured stormwater is removed from the waste stream and prevented from reaching receiving waters. Water re-use systems can be used to create or enhance wetlands and riparian (stream) habitats for streams that have been impaired or dried from water diversion, thus enhancing the water quality benefits of these other practices. | |
− | :-[https:// | + | |
+ | The following design considerations may enhance the water quality benefits of harvest and reuse systems. | ||
+ | *The designer should consider the project site pollutant sources during design and determine if additional stormwater treatment measures are required for use, what level of pretreatment is needed, and whether first flush diverters are appropriate. For more information on pollutant sources and pretreatment needs see [[Water quality considerations for stormwater and rainwater harvest and use/reuse]]. Also see information on [[Pretreatment]]. | ||
+ | *The designer should consider first flush diverters in the collection system design to bypass high pollution loads during snowmelt or pollutant laden events when necessary to meet the requirements of the water use. However, first flush diverters should be utilized with caution ([https://www.bluebarrelsystems.com/blog/first-flush-diverter/]; [https://rainharvesting.com.au/field-notes/articles/rain-harvesting/the-benefits-of-using-first-flush-diverters/#:~:text=First%20flush%20diverters%20are%20a,first%20initial%20millimetres%20of%20rain.]). | ||
+ | *Designer should place the appropriate settlement and solid removal procedures in the treatment train to prevent their entry into the reuse containment system | ||
+ | *Design the site container to maximize capture and storage of runoff and prevent short-circuiting during rainfall events. See [[Determining the appropriate storage size for a stormwater and rainwater harvest and use/reuse system]] and [[Estimating the water balance for a stormwater and rainwater harvest and use/reuse site]]. | ||
+ | |||
+ | See [[Calculating credits for stormwater and rainwater harvest and use/reuse]] | ||
==Constructed Ponds and Wetlands== | ==Constructed Ponds and Wetlands== |
This page provides information on the water quality benefits of green stormwater infrastructure (GSI) practices ( best management practices). The water quality benefit of a practice is defined by its ability to attenuate pollutants from stormwater runoff and prevent them from reaching receiving waters. All GSI practices provide water quality benefits since that is their primary function.
These benefits vary between each practice, primarily as a result of the mechanism by which pollutants are attenuated.
Practice | Water quality benefit | Notes |
---|---|---|
Bioretention and infiltration | ||
Tree trench and tree box | ||
Green roof | ||
Vegetated swale | ||
Vegetated filter strip | ||
Permeable pavement | ||
Constructed wetland | ||
Rainwater harvesting | ||
Level of benefit: ◯ - none; ◔; - small; ◑ - moderate; ◕ - large; ● - very high |
Green infrastructure (GI) encompasses a wide array of practices, including stormwater management. Green stormwater infrastructure (GSI) encompasses a variety of practices primarily designed for managing stormwater runoff but that provide additional benefits such as habitat or aesthetic value.
There is no universal definition of GI or GSI (link here fore more information). Consequently, the terms are often interchanged, leading to confusion and misinterpretation. GSI practices are designed to function as stormwater practices first (e.g. flood control, treatment of runoff, volume control), but they can provide additional benefits. Though designed for stormwater function, GSI practices, where appropriate, should be designed to deliver multiple benefits (often termed "multiple stacked benefits". For more information on green infrastructure, ecosystem services, and sustainability, link to Multiple benefits of green infrastructure and role of green infrastructure in sustainability and ecosystem services.
The adjacent table provides a summary of estimated pollutant removal for stormwater bmps. However, pollutant removal is a function of many factors, including design, construction, and maintenance of the BMP; quality of incoming stormwater; time of year; rainfall and watershed characteristics; and so on. The user is encouraged to read the section called Factors affecting pollutant removal.
Median pollutant removal percentages for several stormwater BMPs. Sources. More detailed information and ranges of values can be found in other locations in this manual, as indicated in the table. NSD - not sufficient data. NOTE: Some filtration bmps, such as biofiltration, provide some infiltration. The values for filtration practices in this table are for filtered water.
Link to this table
Practice | TSS | TP | PP | DP | TN | Metals1 | Bacteria | Hydrocarbons |
---|---|---|---|---|---|---|---|---|
Infiltration2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Biofiltration and Tree trench/tree box with underdrain | 80 | link to table | link to table | link to table | 50 | 35 | 95 | 80 |
Sand filter | 85 | 50 | 85 | 0 | 35 | 80 | 50 | 80 |
Iron enhanced sand filter | 85 | 65 or 746 | 85 | 40 or 606 | 35 | 80 | 50 | 80 |
Dry swale (no check dams) | 68 | link to table | link to table | link to table | 35 | 80 | 0 | 80 |
Wet swale (no check dams) | 35 | 0 | 0 | 0 | 15 | 35 | 35 | NSD |
Constructed wet ponds4, 5 | 84 | 50 or 685 | 84 | 8 or 485 | 30 | 60 | 70 | 80 |
Constructed wetlands | 73 | 38 | 69 | 0 | 30 | 60 | 70 | 80 |
Permeable pavement (with underdrain) | 74 | 41 | 74 | 0 | NSD | NSD | NSD | NSD |
Green roofs | 85 | 0 | 0 | 0 | NSD | NSD | NSD | NSD |
Vegetated (grass) filter | 68 | 0 | 0 | 0 | NSD | NSD | NSD | NSD |
Harvest and reuse | Removal is 100% for captured water that is infiltrated. For water captured and routed to another practice, use the removal values for that practice. |
TSS=Total suspended solids, TP=Total phosphorus, PP=Particulate phosphorus, DP=Dissolved phosphorus, TN=Total nitrogen
1Data for metals is based on the average of data for zinc and copper
2BMPs designed to infiltrate stormwater runoff, such as infiltration basin/trench, bioinfiltration, permeable pavement with no underdrain, tree trenches with no underdrain, and BMPs with raised underdrains.
3Pollutant removal is 100 percent for the volume infiltrated, 0 for water bypassing the BMP. For filtered water, see values for other BMPs in the table.
4Dry ponds do not receive credit for volume or pollutant removal
5Removal is for Design Level 2. If an iron-enhanced pond bench is included, an additional 40 percent credit is given for dissolved phosphorus. Use the lower values if no iron bench exists and the higher value if an iron bench exists.
6Lower values are for Tier 1 design. Higher values are for Tier 2 design.
Bioretention is an excellent stormwater treatment practice due to the variety of pollutant removal mechanisms, including vegetative filtering, settling, evaporation, infiltration, transpiration, biological and microbiological uptake, and soil adsorption. Bioretention can be designed as an effective infiltration / recharge practice, particularly when parent soils have high permeability (> ~ 0.5 inches per hour). Bioretention designed for infiltration ( bioinfiltration) removes 100 percent of pollutants for the portion of runoff water that is infiltrated, although there may be impacts to shallow groundwater. Bioretention designed as filtration ( biofiltration) employs engineered media that is effective at removing solids, most metals, and most organic chemicals. Removal of phosphorus depends on the media (link here). Links to water quality information for bioretention - [1]; [2]
The following design considerations can improve the water quality function of bioretention practices.
See Calculating credits for bioretention
Tree trenches and tree boxes are an excellent stormwater treatment practice due to the variety of pollutant removal mechanisms including vegetative filtering, settling, evaporation, infiltration, transpiration, biological and microbiological uptake, and soil adsorption. Tree trenches and tree boxes can be designed as an effective infiltration / recharge practice, particularly when parent soils have high permeability (> ~ 0.5 inches per hour). Link to water quality information for tree trench/tree box - [3]
The following design considerations can improve the water quality benefits of tree trenches.
See Calculating credits for tree trenches and tree boxes
Permeable pavement are an excellent stormwater practice that allows for the absorption and infiltration of rainwater and snow melt onsite. It can reduce the concentration of some pollutants either physically (by trapping it in the pavement or soil), chemically (bacteria and other microbes can break down and utilize some pollutants), or biologically (plants that grow in-between some types of pavers can trap and store pollutants)(5). Permeable pavement functioning as an infiltration practice (no underdrain) effectively treats most pollutants, including dissolved pollutants. When an underdrain is employed, permeable pavement is effective at removing solids and pollutants attached to those solids. Additionally, permeable pavements can reduce the need for road salt (6).
The following design considerations may improve the water quality benefits of permeable pavement.
See Calculating credits for permeable pavement
Green roofs provide stormwater treatment benefits, but because pollutant concentrations are generally low, these benefits are limited. Pollutant removal mechanisms include filtering, evaporation, transpiration, biological and microbiological uptake, and soil adsorption.
Green roofs employ engineered media that is effective at removing solids, most metals, and most organic chemicals. Green roofs are generally not effective at retaining phosphorus because of the organic matter content in the media. They therefore are likely to lose phosphorus during the first years after establishment, but loss may gradually diminish over time. Use of low organic matter media, media that does not leach phosphorus (e.g. peat), or amendments (e.g. iron filings) may minimize or eliminate phosphorus losses from green roofs.
See Calculating credits for green roofs and this technical support document.
Water re-use and water harvesting facilities can help improve water quality by capturing stormwater runoff and reducing offsite discharges into the storm sewer system and nearby water resources. The nature of stormwater re-use facilities varies widely, thus there is great variability in their effectiveness to remove storm water pollutants. Most water re-use projects have been developed to meet non-potable water demands, such as agriculture, landscape, public parks, irrigation, etc. In these cases, the captured stormwater is removed from the waste stream and prevented from reaching receiving waters. Water re-use systems can be used to create or enhance wetlands and riparian (stream) habitats for streams that have been impaired or dried from water diversion, thus enhancing the water quality benefits of these other practices.
The following design considerations may enhance the water quality benefits of harvest and reuse systems.
See Calculating credits for stormwater and rainwater harvest and use/reuse
Stormwater Ponds and wetlands are BMPs designed and constructed to settle out pollutants and nutrients (nitrogen, phosphorus, sediment, etc.) that are readily found in stormwater runoff. The removal of these pollutants helps prevent the degradation of downstream water bodies. It’s important to consider the timely and proper maintenance of stormwater ponds so that they function as designed. The lack of a proper maintenance plan for stormwater ponds can compromise their efficiency to remove pollutants and improve water quality. If not maintained properly, excess pollutants in ponds and wetlands may become sources of water quality issues as a poor water color/clarity/odor, low dissolved oxygen can lead to plant die off, and prevalence of algal blooms. Excess sediment can also clog structures within the BMPs impacting their overall effectiveness.
Vegetated swales that are designed and constructed with an impermeable check dam with/without an underdrain can improve water quality through treatment of polluted stormwater runoff through sedimentation, filtration, and infiltration. A study performed by the university of Maryland found a reduction of mass pollutant loads for Total Suspended Solids (TSS) by 38% - 62%, nitrate by 92% - 85%, and nitrite by 54% - 71%7. For swales with underdrains, the soil mix design should be carefully selected to ensure that there is no net increase in the export of pollutants, primarily nitrogen and phosphorus. For example, filtration media mixtures that contain a large percentage of compost can potentially export nutrients, such as nitrate and phosphorus, instead of retaining them.
Sand filters are an effective BMP for removing several common pollutants in stormwater runoff and can increase water quality to downstream water resources. Pollutants are removed through sedimentation and filtration processes. The highest pollutant removal efficiencies include sediment, biochemical oxygen demand (BOD), and fecal coliform bacteria. There is a moderate removal efficiency for total metals, a lower removal efficiency for nutrients8. Lab effectiveness studies have shown a reduction in 99.98% protozoan, 90% - 99% bacterial, and 80% - 98% E. coli removal rates, respectively9.