Best Management Practices that infiltrate stormwater runoff into underlying soil include, but are not limited, to
These are discussed briefly below.
Applications and treatment capabilities for infiltration basins | |||
Applications | Treatment capabilities3, 4, 5 | ||
Residential | Yes | TSS | High6 |
Commercial | Yes | TN | Medium/high |
Ultra-urban | Limited1 | TP | Medium/high |
Industrial | Yes2 | Chloride | Low |
Highway/road | Limited | Metals | High |
Recreational | Yes | Oils and grease | High |
Pathogens | High | ||
1 Due to a size restriction; 2 Unless the infiltration practice is located in an industrial area with exposed significant materials or from vehicle fueling and maintenance areas. Infiltration BMPs are PROHIBITED in these areas; 3Underground infiltration systems may have different (likely lower) pollutant removal capabilities than what is provided in this table. These systems may have a wider application range. 4 This is only for the portion of flow that enters the infiltration basin; by-passed runoff does not receive treatment; 5 Low = < 30%; Medium = 30-65%; High = 65 -100%); 6 Assumes adequate pre-treatment Sources: Schueler, 1987, 1992; USEPA 1993a, 1993b; Maniquiz et al., 2010; NPRPD, 2007; California Stormwater Manual, 2009; Pennsylvania Stormwater Manual, 2006 |
An infiltration basin is a natural or constructed impoundment that captures, temporarily stores and infiltrates the design volume of water over the required drawdown of less than 48 hours into the surrounding naturally permeable soil. (Note: all water captured by the basin must be removed within 48 hours, including water passing to a drain). In the case of a constructed basin, the impoundment is created by excavation or embankment. Infiltration basins are commonly used for drainage areas of 5 to 50 acres with land slopes that are less than 20 percent. Typical depths range from 2 to 6 feet, including bounce in the basin. The sizing is to control stormwater volumes at the regional or development scale as opposed to bioretention basins (rain gardens) that are designed at the site scale. Typical dimensions range from 1,000 square feet up to an acre. Infiltration basins are commonly constructed with plant species that can tolerate and thrive in this unique growing environment.
For more information, see the following pages in this Manual.
Applications and treatment capabilities for infiltration trenches | |||
Applications | Treatment capabilities3, 4 | ||
Residential | Yes | TSS5 | High5 |
Commercial | Yes | TN | Medium/high |
Ultra-urban | Limited1 | TP | Medium/high |
Industrial | Yes2 | Chloride | Low |
Highway/road | Yes | Metals | High |
Recreational | Yes | Oils and grease | High |
Pathogens | High | ||
1 Due to a size restriction; 2 Unless the infiltration practice is located in an industrial area with exposed significant materials or from vehicle fuelling and maintenance areas. Infiltration BMPs are PROHIBITED in these areas; 3 This is only for the portion of flow that enters the infiltration basin; by-passed runoff does not receive treatment; 4 Low = < 30%; Medium = 30-65%; High = 65 -100%); 5 Assumes adequate pre-treatment Sources: Schueler, 1987, 1992; USEPA 1993a, 1993b; Maniquiz et al., 2010; NPRPD, 2007; California Stormwater Manual, 2009; Pennsylvania Stormwater Manual, 2006 |
An infiltration trench is a shallow excavated trench, typically 3 to 6 feet deep, that is backfilled with a coarse stone aggregate allowing for the temporary storage of runoff in the void space of the material. Drawdown of this stored runoff occurs through infiltration into the surrounding naturally permeable soil. Infiltration trenches may be modified to become stormwater tree trenches and boxes where applicable with the addition of growing medium. All water captured by the BMP must be removed within 48 hours through infiltration and/or a drain. Trenches are commonly used for drainage areas less than 5 acres in size.
For more information, see the following pages in this Manual.
Applications and treatment capabilities for bioinfiltration basins | |||
Applications | Treatment capabilities2, 3 | ||
Residential | Yes | TSS | High4 |
Commercial | Yes | TN | Low/Medium5 |
Ultra-urban | Limited7 | TP | Medium/high6 |
Industrial | Yes1 | Chloride | Low |
Highway/road | Yes | Metals | High |
Recreational | Yes | Oils and grease | High |
Pathogens | High | ||
1 Unless the infiltration practice is located in an industrial area with exposed significant materials or from vehicle fuelling and maintenance areas. Infiltration BMPs are PROHIBITED in these areas; 2 This is only for the portion of flow that enters the infiltration basin; by-passed runoff does not receive treatment; 3 Low = < 30%; Medium = 30-65%; High = 65 -100%); 4 Assumes adequate pre-treatment; 5 This assumes no underdrain; 6 Certain soil mixes can leach P; 7 Due to a size restriction Sources: EPA Factsheet, 1999; Davis et al., 2001, 2003, 2006; Hsieh and Davis, 2005; Hong et al., 2006; Hunt et al., 2006; NPRPD, 2007; Li and Davis, 2009; Diblasi et al., 2009; Passeport et al., 2009; Brown et at., 2011a, b; Komlos et al., 2012; Denich et al., 2013; Li and Davis, 2013; California Stormwater BMP |
Bioinfiltration basins, often called rain gardens, use soil (typically engineered media or mixed soil) and native vegetation to capture runoff and remove pollutants. Both the media and underlying soil typically have high infiltration rates that allow captured water to infiltrate within a required drawdown time, usually 48 hours. For more information, see the following pages in this Manual.
Applications and treatment capabilities for permeable pavement | |||
Applications | Treatment capabilities2, 3 | ||
Residential | Yes | TSS | High4 |
Commercial | Yes | TN | Medium/High |
Ultra-urban | Yes | Nitrate | Low/Medium |
Industrial | Yes1 | TP | Medium/High |
Retrofit | Yes | Chloride | Low |
Highway/road | Yes | Metals | High |
Recreational | Yes | Oils and grease | High |
Pathogens | 5 | ||
1 Unless the infiltration practice is located in an industrial area with exposed significant materials or from vehicle fuelling and maintenance areas. Infiltration BMPs are PROHIBITED in these areas; 2 This is only for the portion of flow that enters the infiltration basin; by-passed runoff does not receive treatment; 3 Low = < 30%; Medium = 30-65%; High = 65 -100%); 4 Assumes adequate pre-treatment; 5 Insufficient information Source: Schueler, 1987; Pratt et al, 1999; Adams, 2003; Brattebo and Booth, 2003; Adams, 2003; Bean et al, 2007; SEMCOG, 2008; International Stormwater Database, 2012 |
Permeable pavements are paving surfaces that allow stormwater runoff to filter through surface voids into an underlying stone reservoir for infiltration and/or storage. They are suitable for driveways, trails, parking lots, and roadways with lighter traffic. The most commonly used permeable pavement surfaces are pervious concrete, porous asphalt, and permeable interlocking concrete pavers (PICP). All permeable pavements have a similar design layering system, consisting of a surface pavement layer, an underlying stone aggregate reservoir layer, optional underdrains for filtration and geotextile over non-compacted soil subgrade. Discharge of this stored runoff occurs through infiltration into the surrounding naturally permeable soil. The drainage area leading to permeable pavements should not exceed twice the surface area of the final pavement surface.
For more information, see the following pages in this Manual.
Applications and treatment capabilities for tree box/tree trench | |||
Applications | Treatment capabilities2, 3 | ||
Residential | Yes | TSS | High4 |
Commercial | Yes | TN | Low/Medium |
Ultra-urban | Yes | TP | Medium/High5 |
Industrial | Yes1 | Chloride | Low |
Highway/road | No | Metals | High |
Recreational | Yes | Oils and grease | High |
Pathogens | High | ||
1 Unless the infiltration practice is located in an industrial area with exposed significant materials or from vehicle fuelling and maintenance areas. Infiltration BMPs are PROHIBITED in these areas; 2 This is only for the portion of flow that enters the infiltration basin; by-passed runoff does not receive treatment; 3 Low = < 30%; Medium = 30-65%; High = 65 -100%); 4 Assumes adequate pre-treatment; 5 Certain soil mixes can leach P. Source: see [1] |
Tree trenches are a system of trees that are connected by an underground infiltration structure. The system consists of a stormwater tree trench or box lined with geotextile fabric with structural stone, gravel or soil boxes in which the trees are placed. Tree systems consist of an engineered soil layer designed to treat stormwater runoff via filtration through plant and soil media, and through evapotranspiration from trees. Discharge of this stored runoff occurs through infiltration into the surrounding naturally permeable soil. Tree species are carefully selected to survive both inundation and drought conditions in urban environments where they will be potentially affected by chloride and other traffic concerns. Tree trenches and boxes drainage areas should be less than five acres depending on the size of each trench
For more information, see the following pages in this Manual.
Underground infiltration systems and dry wells have been installed below parking lots and other impervious surfaces on sites where insufficient space exists for a surface infiltration system. They are designed to temporarily store stormwater runoff before slowly infiltrating the water into the subsurface (Connecticut, 2004). There is limited information on the effectiveness of these systems in removing pollutants. Limited data suggests they may be less effective at removing mobile pollutants than surface-based infiltration systems.
One concern is that underground infiltration may meet the U.S. Environmental Protection Agency (EPA) definition of a Class V injection well. Class V injection wells are defined as any bored, drilled, or driven shaft, or any dug hole that is deeper than its widest surface dimension. Class V injection wells can also be an improved sinkhole, or a subsurface fluid distribution system (from U.S. EPA, June 2003). The U.S. EPA administers Class V injection well permits in Minnesota. Minimum requirements for installing, permitting, and operating a Class V well is defined by the USEPA.
A second concern pertains to the overall pollutant removal effectiveness of those underground infiltration systems that do not meet the definition of a Class V injection well. The document released by the Transport Research Synthesis titled “Issues of Concern Related to Underground Infiltration Systems for Stormwater Management and Treatment” provides a good overview of the concerns related to underground infiltration systems (MNDOT, 2009). Issues identified in this report include:
This Manual currently does not provide guidance for design, construction, maintenance, and assessment of underground infiltration systems.
Infiltration can be enhanced on soils that have been improved or amended. This manual contains limited information on enhanced turf and does not provide guidance for design, construction, maintenance, and assessment of enhanced turf. Information on use of compost in soil and credits associated with improved turf can be found on the Turf page. A discussion of alleviating compaction from construction activities can be found here.
The following table provides a summary of unit processes for the different infiltration BMPs.
Unit processes of stormwater treatment techniques (Adapted from WEF, 2008)
Link to this table
Control | Infiltration basin | Infiltration trench | Bioinfiltration | Permeable pavement | Tree box/tree trench | Enhanced turf |
---|---|---|---|---|---|---|
Peak flow attenuation | X | X | X | X | ||
Runoff volume reduction | X | X | X | X | X | |
Infiltration | X | X | X | X | X | X |
Dispersion | ||||||
Evapotranspiration | X | X | ||||
Runoff collection and usage | X1 | X1 | ||||
Sedimentation | X | X | X | |||
Flotation | X | X | ||||
Laminar separation | ||||||
Swirl concentration | ||||||
Sorption | X | X | X | X | ||
Precipitation | X | X | X | X | ||
Coagulation | X | X | X | X | ||
Filtration | X | |||||
Plant metabolism | X | X | X | |||
Nitrification/denitrification | X | X | X | |||
Organic compound degradation | X | X | X | X | ||
Pathogen die off | X | X | X | |||
Temperature reduction | X | X | X | X | ||
Disinfection | X | X | X | X |
1 If underdrain is present