Chloride data across the TCMA was compiled and assessed to support the development of the CMP. As part of the TCMA Chloride Project, the MPCA worked with local partners to develop and implement a chloride monitoring program. The objective of the monitoring program was to better inform an understanding of chloride conditions across the TCMA, including seasonality, trends over time, and the potential for high chloride concentrations in the deepest part of lakes. Seventy-four lakes, 27 streams, and eight storm sewers were monitored as part of this effort from 2010-2013. The Chloride Monitoring Guidance for Lakes and Chloride Monitoring Guidance for Streams and Stormsewers were developed by the MPCA and local experts from the TCMA Chloride MSG and can be found on the MPCA’s TCMA Chloride Project website. The monitoring guidance provides recommendations on sample collection, times of the year to sample, as well as guidance for monitoring high risk waters. In addition to data collected in 2010-2013 following the TCMA Chloride Project monitoring program, chloride data from a host of other sources and timeframes were compiled. The data were collected by several local organizations including the MPCA, the United States Geological Survey (USGS), Capitol Region Watershed District (CRWD), Metropolitan Council Environmental Services (MCES), Minneapolis Park & Recreation Board (MPRB), Minnehaha Creek Watershed District (MCWD), Mississippi Watershed Management Organization (MWMO), Ramsey County Environmental Services, Ramsey-Washington Metro Watershed District (RWMWD), Rice Creek Watershed District, Scott County Watershed Management Organization, and Three Rivers Park District. A large portion of the data were compiled and submitted to the State of Minnesota’s Environmental Quality Information System database (EQuIS). All data collected by Metropolitan Council are available on their Environmental Information Management System (EIMS) database, and data collected by USGS are available on their water-quality data for the Nation database: waterdata.usgs.gov/nwis/qw.
The impacts of climate change create uncertainty related to winter salt application and chloride levels in TCMA waters in the future. Predictions provided by the United States Global Change Research Program for the TCMA area include warmer winter temperatures by 5 - 6 degrees Fahrenheit, longer freeze-free seasons increasing by 20-30 days, greater winter precipitation, and the likelihood of more frequent extreme events (Kunkel et al. 2013). On the one hand, these predictions of climate change may result in reduced salt use. On the other hand, more frequent snow events, more extreme events, and potentially more frequent ice storms may result in greater needs for deicing roads. Continued monitoring of climate change and chloride concentrations in the TCMA waters, tracking of salt use on all paved surfaces, and an adaptive process will be needed to restore and protect the TCMA waters from chloride impairments with the prospects of a changing climate.
The remainder of this section will present an overview of the assessments conducted based on the available data, including determinations of impairment, time and spatial trends in chloride concentrations, the TMDLs developed for impaired waters, and waters showing a high-risk for future impairment.
TCMA Chloride Management Plan - TCMA Chloride Conditions - Condition status
TCMA Chloride Management Plan - TCMA Chloride Conditions - Chloride sources
TCMA Chloride Management Plan - TCMA Chloride Conditions - Chloride trends
TCMA Chloride Management Plan - TCMA Chloride Conditions - TMDL summary
TCMA Chloride Management Plan - TCMA Chloride Conditions - Protection of surface and groundwater
Protection is an opportunity to prevent waters from continued degradation which may result in impairment. Prevention or protection is often more easily accomplished than the restoration of an impaired waterbody. Protection efforts also may eliminate the need for additional permit and other regulatory requirements to reduce pollution. Successful protection efforts rely on understanding how current practices or conditions may be contributing to water quality conditions.
Preventing a waterbody from being contaminated with chloride is easier and more cost effective than restoration. Chloride is a conservative ion and will not break down over time but rather it accumulates in waters. Therefore, efforts should be made to protect waters that show an increasing trend in chloride concentration or have been shown to have chloride concentrations approaching the water quality criteria. Lakes, wetlands, or streams with at least one sample within 10% of the chronic water quality standard within the last 10 years have been identified as a high risk waterbody (one exceedance of 207 mg/L chloride). Proactive actions to reduce chloride loads to these high risk waterbodies should be pursued. Proactive actions similar to actions listed for impaired waters should be explored to protect high risk waters. These waters are considered to be approaching the water quality standard and if no actions are taken, they will likely reach impairment status in the near future. The TCMA lakes and streams identified as being at high risk for potential chloride impairment are shown in the High Risk Lakes in the TCMA table and the High Risk Streams in the TCMA table, respectively.
It should be noted that there are potentially many more high risk waters in the TCMA that have not been identified because there is limited or no monitoring data available for those waters. For this reason, similar proactive approaches to chloride management should be taken to prevent chloride contamination.
In addition to the high risk waters listed above, protecting all surface waters and groundwater from further degradation due to chloride is important. By implementing salt reducing practices throughout the TCMA, both the need to restore those waters already impaired and also protect those waters not yet exceeding the standard are addressed. The practices necessary for protection of groundwater are the same as those for restoring and protecting surface waters. Through targeting and prioritization a starting point can be established. Management practices and BMPs used for impaired and high risk waters can be the same for all waterbodies and should provide the same level of protection and chloride reduction.
High risk lakes in the TCMA
Link to this table
Lakes | AUID |
---|---|
Beaver Lake | 62-0016-00 |
Bennett Lake | 62-0048-00 |
Calhoun Lake | 27-0031-00 |
Centerville Lake | 02-0006-00 |
Crosby Lake | 62-0047-00 |
Crystal Lake | 27-0034-00 |
Fish Lake | 19-0057-00 |
Gervais Lake | 62-0007-00 |
Hiawatha Lake | 27-0018-00 |
Johanna Lake | 62-0078-00 |
Keller Lake (Main) | 62-0010-02 |
Lake Of The Isles | 27-0040-00 |
McCarron Lake | 62-0054-00 |
Medicine Lake | 27-0104-00 |
Ryan Lake | 27-0058-00 |
Taft Lake | 27-0683-00 |
Unnamed Lake | 62-0278-00 |
Wabasso Lake | 62-0082-00 |
Wakefield Lake | 62-0011-00 |
High risk streams in the TCMA
Link to this table
Streams | AUID |
---|---|
Bevens Creek | 07020012-718 |
Bluff Creek | 07020012-710 |
Classen Lake Creek | 07010206-703 |
Clearwater Creek | 07010206-519 |
County Ditch 17 (Spring Brook) | 07010206-557 |
Credit River | 07020012-517 |
Diamond Creek | 07010206-525 |
Dutch Lake Outlet | 07010206-678 |
Fish Creek | 07010206-606 |
Painter Creek | 07010206-700 |
Rush Creek | 07010206-528 |
Unnamed Creek | 07010206-704 |
Unnamed Creek | 07010206-740 |
Unnamed Creek (Pleasure Ck) | 07010206-594 |
Unnamed Stream (Perro Ck) | 07030005-612 |
Unnamed Stream (Sand Ck) | 07010206-744 |
Unnamed Stream (Trib To Long Lk) (Furgala Creek) | 07030005-765 |
Unnamed Stream In Plymouth | 07010206-738 |
Unnamed Stream Receiving Wtr From Medicine Lk | 07010206-785 |